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PREFACE

The polysiloxanes are by far the most important polymers in the category 
of inorganic or semi-inorganic polymers, with a large industry devoted to 
them in numerous countries in the industrialized world. This book at-
tempts to give an overview of these polymers, and to describe some un-
solved problems in this area.

The material presented here is an updating and significant expansion 
of the material on polysiloxanes in the more general book, Mark, J. E.; 
Allcock, H. R.; West, R. Inorganic Polymers, 2nd ed. Oxford University 
Press: New York, 2004.

It is hoped that the present book will be useful to polymer chemists and 
physicists, inorganic chemists, chemical engineers, and materials scien-
tists. The authors also hope that readers will join in studying the synthe-
sis, characterization, and applications of these fascinating polymeric 
materials.
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CHAP TER 1

Introduction

1.1 BACKGROUND

Polysiloxanes are unique among inorganic and semi-inorganic polymers; 
they are also the most studied and the most important with regard to 
commercial applications. Thus, it’s not surprising that there is an exten-
sive literature describing the synthesis, properties, and applications of 
these materials, including books,1–10 proceedings books,11–14 sections of 
books or encyclopedias,15–58 review articles,59–64 and historical articles.65–74 

The purpose of this volume is not to give a comprehensive overview of 
these polymers but rather to focus on some novel and interesting aspects 
of polysiloxane science and engineering, including properties, work in 
progress, and important unsolved problems.

The Si–O backbone endows polysiloxanes with a variety of intriguing 
properties. The strength of the Si–O bond, for example, imparts consider-
able thermal stability, which is important for high-temperature applica-
tions (e.g., as heat-transfer agents and high-performance elastomers). The 
nature of the bonding and the chemical characteristics of typical side 
groups impart low surface free energy and therefore desirable surface 
properties. Polysiloxanes, for example, are used as mold-release agents, 
waterproofing sprays, and biomedical materials.

Structural features of the chains give rise to physical properties that 
are also of considerable scientific interest. For example, the substituted Si 
atom and the unsubstituted O atom differ greatly in size, giving the chain 
a nonuniform cross section. This characteristic affects the way the chains 
pack in the bulk, amorphous state, which explains the unusual equation-
of-state properties (such as compressibility). Also, the bond angles around 
the O atom are much larger than those around the Si, which makes the 
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planar all-trans form of the chain approximate a series of closed polygons, 
as illustrated in figure 1.1.75 As a result, siloxane chains exhibit a number 
of interesting configurational characteristics that impact properties and 
associated applications.

The major categories of homopolymers and copolymers to be discussed 
are11 (i) linear siloxane polymers [–SiRR’O–] (with various alkyl and aryl 
R,R’ side groups), (ii) sesquisiloxane polymers possibly having a ladder 
structure, (iii) siloxane-silarylene polymers [–Si(CH3)2OSi(CH3)2(C6H4)m–] 
(where the skeletal phenylene units are either meta or para), (iv) silalkylene 
polymers [–Si(CH3)2(CH2)m–], and (v) random and block copolymers, and 
blends of some of the above. Table 1.1 provides some illustrative examples. 
Important topics include the structure, flexibility, transition tempera-
tures, permeability, and other physical properties. Applications include 
high-performance fluids, elastomers, and coatings; surface modifiers; gas 
separation membranes; photoresists; soft contact lenses; body implants; 
and controlled-release systems. Also of interest are the use of sol-gel tech-
niques to convert silicon-containing materials to novel reinforcing fillers 
or to polymer-modified ceramics, and the use of pyrolysis to form high-
performance fibers.

1.2 HISTORY

The first reaction of relevance in silicon chemistry was the conversion of 
elemental silicon to silicontetrachloride, SiCl4, and to trichlorosilane, 
SiHCl3. These purely inorganic substances were then converted into orga-
nometallic species such as RSiX3, by reaction with diethyl zinc and related 
compounds.1, 16, 23, 29, 33

Organosilicon chemistry blossomed with Kipping’s preparation of such 
compounds by the more convenient Grignard process. The resulting si-
lanes turned out to be of paramount importance since they hydrolyzed 
readily to form compounds containing Si–O bonds, both linear and  
cyclic.4, 29, 33 These new materials were first called silicoketones or “sili-
cones” by analogy with ketones R–(C = O)–R’ in the organic area. Struc-
tural studies, however, showed that they did not contain the Si = O double 
bond. Thus, the silicone name is a misnomer, but it has persisted, at least 
in casual usage. However, those in the field prefer the terms “siloxanes” 
and “polysiloxanes.”

Kipping 68 prepared the earliest hybrid inorganic/organic material con-
taining Si–C bonds and reported in a series of papers over the period 
1899–1944. Around 1930, the Corning Glass Company prepared an 
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apparently largely uncharacterized material of this type. This latter work 
resulted in a number of collaborations with the General Electric Company 
and the Mellon Institute focused on siloxane-based, thermally resistant 
coatings. Possible use in fiberglass insulation in submarine motors helped 
accelerate work in this area, including construction of a siloxane pilot 
plant based on Grignard reactions at the Mellon Institute in 1940.

In the case of the direct process, only one of the resulting products can 
be used to obtain siloxane polymers.28 Table 1.1 describes some of these 
products.

1.3 NOMENCLATURE

In most of the literature, siloxane terminology consists simply of specifying 
the side groups and then the backbone. For example, the polymer having the 
repeat unit [–Si(CH3)2O–] is called poly(dimethylsiloxane), and that having 
the repeat unit [–Si(CH3) (C6H5) O–] is called poly(phenylmethylsiloxane). 
Closely related polymers are the poly(silmethylenes) of repeat unit  
[–SiRR’CH2–] and the poly(siloxane-silphenylenes) of repeat unit  
[–SiRR’OSiRR’C6H4–], in which the second oxygen atom in the doubled 
repeat unit is replaced by a phenylene group.

Because certain structures and structural segments appear over and 
over again in the siloxane area, several abbreviations are used in specialized 
areas of the literature.28, 29 The monofunctional unit R3SiO0.5 is designated 

Table 1.1.  BACK BONE A ND SIDE CH A INS ON SOME ILLUSTR ATI V E 

POLYSILOX A NES

Polymer Backbone Side chains Characteristics

Poly(dimethylsiloxane) Si–O– CH3 CH3 Most extensively used 

polysiloxane

Poly(phenylmethylsiloxane) Si–O– C6H5 CH3 Suppressed crystallinity 

and improved radiation 

resistance

Poly(vinylmethylsiloxane) Si–O– C2H3 CH3 Unsaturation sites 

simplify cross linking

Siloxane-silarylene polymers Si–O– and 

Si–(m or p 

phenylene)

CH3 CH3 Stiffer backbones useful 

in some applications

Siloxane-silalkylene polymers Si–O– and 

Si–C–

CH3 CH3 Reduced thermal stability
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“M,” the difunctional unit R2SiO “D,” the trifunctional unit RSiO1.5 “T,” 
and the quadrifunctional SiO2 “Q.” For example, the dimer (CH3)3SiOSi(CH3)3 
is termed “MM,” the oligomer (CH3)3Si[OSi(CH3)2]10OSi(CH3)3 is termed 
“MD10M,” and the cyclic trimer [Si(CH3)2O]3 is called “D3.” Table 1.2 sum-
marizes this nomenclature. Unprimed abbreviations are taken to mean the 
R substituents are methyl groups, since these are the most common and the 
most important. Primed abbreviations are used for other substituents, the 
most important of which is probably the phenyl group.

Table 1. 2.  NOTATIONS FOR VA R IOUS POLYSILOX A NE STRUCTUR A L UNITS

Notation Structure Examples

M R3SiO0.5 MM Dimer (CH3)3SiOSi(CH3)3

D R2SiO MD6M Oligomer (CH3)3Si[OSi(CH3)2]6OSi(CH3)3

D R2SiO D3 Cyclic trimer [Si(CH3)2O]3

T RSiO1.5 TT Two trifunctional cross links RSi(O2)OSi(O2)R

Q SiO2 Q Silica

Figure 1.1:
The polysiloxane chain backbone in the low-energy, planar, all-trans conformation.75 
Arrows represent group dipoles M for each Si–O–Si pair of consecutive skeletal bonds. 
Because of the cancelation of dipoles, the dipole moment of oligomers depends on mo-
lecular weight.
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CHAP TER 2

Preparation, Analysis, and Degradation

2.1 PREPARATION OF MONOMERS

Elemental silicon on which the entire technology is based is typically  
obtained by reduction of the mineral silica with carbon at high 
temperatures1–3:
	                               

→SiO  + 2C Si + 2CO2

	 (2.1)

The silicon is then converted directly to tetrachlorosilane by the reaction
	                                      

→Si + 2Cl    SiCl2 4

	 (2.2)

Tetrachlorosilane can be used to form an organosilane by the Grignard 
reaction
	                   →SiCl + 2 RMgX R SiCl + 2MgClX4 2 2

	 (2.3)

This relatively complicated reaction has been replaced by the so-called 
Direct Process or Rochow Process,2, 4 which starts from elemental silicon 
as is illustrated by the reaction
			      

→Si + 2 RCl   R SiCl2 2

	
(2.4)

This process also yields RSiCl3 and R3SiCl, which can be removed by dis-
tillation. Compounds of formula R2SiCl2 are extremely important as 
intermediates to a variety of substances having both organic and inor-
ganic character.5–8 Hydrolysis gives dihydroxy structures, which can 
condense to give the basic [–SiR2O–] repeat unit. The nature of the 
product obtained depends greatly on the reaction conditions.8 Basic 
catalysts and higher temperatures favor higher molecular weight linear 
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polymers. Acidic catalysts tend to produce cyclic small molecules or low 
molecular weight polymers.

The hydrolysis approach to polysiloxane synthesis has been largely re-
placed by ring-opening polymerization2, 8–14 of organosilicon cyclic tri-
mers and tetramers, with ionic initiation. These cyclic monomers are 
produced by the hydrolysis of dimethyldichlorosilane. Under the right 
conditions, at least 50 wt % of the products are cyclic oligomers. The de-
sired cyclic species are separated from the mixture for use in ring-opening 
polymerizations such as those described in the following section.

In addition, “click” chemistry has been developed for new synthesis tech-
niques in general,15–18 and polymerizations in particular.19 These approaches 
have been used to prepare polysiloxane elastomers20 and polydimethylsilox-
ane (PDMS) copolymers that can function as thermoplastic elastomers.21 
New synthetic strategies for structured silicones, based on B(C6F5)3 have 
also been developed.22 Another new approach involves enzymes,23 such as 
the lipase enzymatically catalyzed synthesis of silicone aromatic polyesters 
and silicone aromatic polyamides.24

2.2 RING-OPENING POLYMERIZATIONS

Cyclic siloxanes can undergo a ring-opening chain-growth polymeriza-
tion. Free radicals are not useful as initiator species, because of the nature 
of the siloxane bond, but cationic initiators are very effective. The reaction 
is illustrated using the most common cyclic oligomers, the timer hexa-
methylcyclotrisiloxane, or the tetramer octamethylcyclotetrasiloxane9–10:
	                              

( ) [ ]→SiR O      –SiR O–
x2 3,4 2

	
(2.5)

where R can be alkyl or aryl and x is the degree of polymerization. In prin-
ciple, the reaction is reversible, but in practice it is made essentially irre-
versible by the choice of monomer, initiator, and polymerization conditions. 
Because of this potential reversibility however it is important to remove all 
initiators from the finished product, typically done by neutralization of 
the acidic or basic terminal chain residues. Alternatively, some initiators 
can be removed by volatilization or thermolysis. End blocking is frequently 
used to place groups on chain ends that increase thermal stability and pre-
vent re-equilibration.

Because it is frequently impossible to remove all traces of active spe-
cies, some reorganization is almost inevitable. In these processes, siloxane 
bonds interchange to bring about variation in both molecular weight and 
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in the relative amounts of cyclic and linear species. At equilibrium, a 
Gaussian distribution of molecular weight exists. The cyclic oligomers 
that occur most frequently are D4 through D6. The amount obtained de-
pends greatly on the “monomer” and on the polymerization conditions. 
D4 through D6 are typically present to the extent of 10–15 wt %. The 
lower molecular weight products are generally removed from the polymer 
before it is used in a commercial application.

The low molecular weight products are also of interest from a funda-
mental scientific point of view in two respects. First, the extent to which 
such products are formed can be used as a measure of chain flexibility.25–27 
Second, the various cyclic species formed can be purified using standard 
separation techniques, and then used to test theoretical predictions re-
garding the differences between otherwise identical cyclic and linear 
molecules.28–33

For anionic equilibrations, typical catalysts are alkali metal oxides and 
hydroxides, and bases in general.34–40 Initiation and propagation involve 
nucleophilic attack on the monomer, causing opening of the ring followed 
by chain extension. As is frequently the case in ionic polymerizations, the 
nature of the counter cation, particularly its size, can have a large effect on 
the reaction. This polymerization is very different from most others,8 
which are driven by a decrease in enthalpy. That is, the decrease in entropy 
that accompanies the linkage of monomers into a chain-like structure is 
counteracted and overcome by the decrease in energy generated by the 
formation of new chemical bonds. In the siloxane case however the bonds 
linking the monomer units into the chain are similar in energy to those 
found in siloxane rings, and the net energy change is very small. There is 
an increase in entropy, presumably from increased internal molecular 
freedom of the siloxane segments in going from the cyclic structures to 
the linear chains. It is this increase in entropy that drives the polymeriza-
tion reaction. Ring opening has also been induced by hydride transfer 
reactions.41

A new, low-Tg siloxane thermoplastic elastomer with a functionalizable 
backbone was recently synthesized via sequential anionic ring-opening 
polymerization and coupling.42 The attachment of a photoresponsive 
liquid crystal led to a rapid thermoplastic photoactuator. Polystyrene was 
used as a hard glassy end block, and poly(vinylmethylsiloxane) served as 
the soft middle segment in this polystyrene-b-poly(vinylmethylsiloxane)-
b-polystyrene ABA triblock copolymer.

Cationically catalyzed polymerizations12, 43–45 have not received as 
much attention as the anionic variety. Typical cationic (acidic) catalysts in 
this case are Lewis acids. Yields and proportions of the various species are 
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generally very similar to those obtained in anionic polymerizations, al-
though the mechanism is very different. The reaction is thought to pro-
ceed through a tertiary oxonium ion formed by addition of a proton to one 
of the O atoms of the cyclic siloxane. The mechanism may involve step 
growth, as well as the expected chain growth. Examples of other catalysts 
used include metal sulfonate/acid chloride combinations.46 In the case of 
step-growth polymerizations, tin catalysts are very effective.47

Polymerization of nonsymmetrical cyclic siloxanes gives stereochemi-
cally variable polymers [–SiRR’O–] that are analogous to the totally or-
ganic vinyl and vinylidene polymers [–CRR’CH2–]. In principle, it should 
be possible to prepare siloxanes in the same stereoregular forms  
(isotactic and syndiotactic) that have been achieved for some of their or-
ganic counterparts,8, 48–49 as mentioned in chapter 1. This goal has been 
accomplished to some extent (see chapter 5). The major advantage is the 
crystallizability generally observed for isotactic and syndiotactic stereo-
regular forms of the polymer, whereas the stereoirregular (atactic) modi-
fication is inherently noncrystallizable. Strictly alternating copolymers 
have recently been reported.50

In some cases, an end blocker such as YR’SiR2OSiR2R’Y is used to form 
reactive -OSiR2R’Y chain ends.51–52 Interesting examples include triaryl-
amines,53 nitrobenzoxadiazole fluorescent groups via thiol-ene coupling.54 
Homopolymerizations of this type are discussed in detail elsewhere.8, 10

Some studies have focused on the preparation of porous polysiloxane 
materials55–60 such as low-density aerogels.61 Mesoporous and ultra-large 
pore siloxane structures can be prepared by condensation of tetraethy-
lorthosilicate (TEOS) and other silica precursors. These materials show 
porosity, sometimes ordered, with pore sizes up to 30 nm.62–66 Hollow 
nano/microstructures have also been prepared, by ionic polymerization.67 
In a reversal of roles, siloxane chains have been substituted into 
poly(p-xylylene).68

It has become important to develop environmentally-friendly methods 
for preparing any of these materials.69

2.3 OTHER APPROACHES AND COPOLYMERIZATIONS

Atom transfer radical polymerization (ATRP) has been used in the area of 
polysiloxane70 and there have been a number of studies on controlling the 
stereochemical structures of polysiloxanes.71–74 Templated syntheses of 
ladder-like siloxane structures75 and the placement of silsesquioxane 
units in siloxane backbones76 have also been explored. Quintana et al. 
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demonstrated robust, antifouling, hydrophilic polysulfobetaine-based 
brushes with diblock architecture fabricated by ATRP using initiator-
modified surfaces.77

Emulsions play a role in some aspects of polysiloxane technology. Po-
lymerization has been carried out in emulsions,78–85 and room temperature–
cured PDMS elastomers have been obtained from aqueous dispersions.86 
Poly(vinyl pyrrolidone) dispersions have been prepared in reactive PDMS 
media.87 Microemulsions containing PDMS also find use in applications 
such as cosmetics. One novel study involved a surfactant solution in a 
polysiloxane, droplets of which bounced on a vertically vibrated liquid sur-
face.88 When the amplitude of the vibration exceeded a threshold value, a 
polysiloxane-water-polysiloxane double emulsion was formed!

Polymerizations have also been carried out in the vapor phase,89 in 
plasmas,90 enzymatically,24, 91–94 and in compressed carbon dioxide.95 Poly-
siloxanes have also been obtained by acid leachate from chrysotile 
asbestos.96

Polymerization of mixtures of monomers, such as (SiR2O)m with 
(SiR’2O)m, can be used to generate random copolymers. These copoly-
mers are generally highly irregular in structure in a chemical rather 
than stereochemical sense. Correspondingly, they also show little if any 
crystallizability. Copolymerizations of this type are discussed in detail 
elsewhere.8, 10

A higher level of structure is illustrated by the preparation of micropo-
rous hybrid polymers from functionalized cubic siloxane cages.97

2.4 STRUCTURAL FEATURES

Several structural features make the siloxane backbone one of the most 
flexible in all of polymer science.98–99 Figure 2.1 illustrates the reasons 
for this extraordinary flexibility. First, because of the nature of the 
bonding25–27, 100–101 the Si–O skeletal bond has a length (1.64 Å) that is 
significantly larger than that of the C–C bond (1.53 Å) of paramount im-
portance in most organic polymers. As a result, steric interference and 
intramolecular congestion are diminished.25–27 This circumstance is true 
for inorganic and semi-inorganic polymers in general. Almost any single 
bond between a pair of inorganic atoms (Si–Si, Si–C, Si–N, P–N, etc.) is 
longer than the C–C bond. Also, the oxygen skeletal atoms are unencum-
bered by side groups and they are as small as an atom can be and still 
have the divalency needed to continue a chain structure. In addition, the 
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Si–O–Si bond angle of ~143o is much more open than the usual tetrahe-
dral bonding (occurring at ~110o), and can “invert”102 through the linear 
(180o form) with little cost in energy. Similarly, torsional rotations can 
occur without serious increases in energy. These structural features have 
the effect of increasing the dynamic flexibility of the chain25–27; they also 
increase its equilibrium flexibility, which is the ability of a chain to take 
on a compact shape when in the form of a random coil. Flexibility is gen-
erally measured, inversely, by the mean-square end-to-end distance or 
radius of gyration of the chain in the absence of excluded-volume 
effects.

2.5 ELASTOMER TECHNOLOGY

Pure siloxane polymers are only rarely appropriate for use in technology. 
Numerous additives are incorporated in order to improve their properties. 
A typical formulation contains the siloxane polymer, plus some or all of the 
following ingredients: reinforcing fillers, extending (nonreinforcing) fill-
ers, processing aids, heat-aging additives, pigments, and curing agents (e.g., 
end-linking agents with associated catalysts, or organic peroxides).103–107

The siloxane polymer usually has a rather high molecular weight, and 
may have reactive ends for end-linking or vinyl side chains for peroxide 
curing, as described in chapter 7.

The preferred reinforcing filler is high surface area silica, particularly 
that made by the fume process, which gives the greatest reinforcement, 
and, because of its high purity, yields excellent electrical insulation prop-
erties.108–109 Silicas obtained from aqueous solutions110 impart moder-
ately good reinforcement but, because of the presence of water on the 
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Figure 2.1:
Sketch of the PDMS chain, showing some structural information relevant to its high flex-
ibility.25 Because of the difference in bond angles (θ’ = 37°, θ” = 70°). The all-trans configu-
ration closes to Figure 1.1 after 360°/(70°–37°) = 11 repeat units. The torsional barrier 
for rotations about the skeletal bonds is very low, which accounts for the high dynamic 
flexibility and low glass transition temperature. Reproduced by permission of John Wiley 
and Sons.
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filler particles, can adversely affect the electrical properties of the elasto-
mer. Ex situ generated titania particles have also been used, particularly 
particles derivitized with trifunctional siloxanes to make them highly 
hydrophobic.111 Carbon black provides some reinforcement, but can in-
terfere with some types of peroxide cures. Also, its electrical conductivity 
can severely compromise the electrical properties of the material.104, 107 
In some cases, silane coupling agents are used to improve the bonding 
between the reinforcing phase and the polymer.112–114 These molecules 
typically have the structure X3SiY, with X chosen to interact strongly 
with one phase, and Y with the other. For example, if X is an alkoxy group 
it can hydrolyze and react with OH groups on the surface of a filler par-
ticle.2 Similarly, if Y is a vinyl group it can be polymerized into the or-
ganic matrix being reinforced, providing enhanced filler-matrix 
bonding.2 It is also possible to form reinforcing filler particles in situ, for 
example by the sol-gel hydrolysis and condensation of precursors such as 
organosilicates.115–116

Not all fillers are designed to improve mechanical properties. Extend-
ing fillers, for example, reduce the cost of the compounded elastomer. 
Nonreinforcing fillers are exemplified by kaolin, diatomaceous earth, and 
minerals such as calcium carbonate. Coloring agents can be either organic 
or inorganic, but the former can adversely affect heat stability. Examples 
of suitable inorganic colorants are oxides and salts of iron, chromium, 
cobalt, titanium, and cadmium. Some not only provide color but can also 
have some beneficial heat-aging effects.

Processing aids are particularly important in the case of elastomers 
that contain highly reinforcing silicas, since these fillers adsorb polymer 
chains so strongly to their surfaces that premature gelation can occur. 
These additives have a softening or plasticizing effect, thus ameliorating 
the occurrence of this complication.104, 107

The nature of the curing (cross-linking) agents introduced depends 
on the particular chemical reaction chosen for generating the cross 
links.117–121 In the case of end-linking reactions, the end groups are gen-
erally either hydroxyl or vinyl units. In the former case, the end-linking 
agent may be TEOS [Si(OC2H5)4], which reacts by a condensation reac-
tion, with a stannous salt used as catalyst. In the latter case, the end-
linking agent can be an oligomeric siloxane that contains reactive Si–H 
groups, with the H atoms adding to the double bonds in the polymeric 
siloxane. Platinum salts are catalysts for this type of addition curing 
reaction.117–120, 122 Other functional groups at the ends or along the 
chains can serve the same purpose.17, 123–134 In an interesting reversal of 
roles, a polysiloxane was used to cross link cellulose acetate.135
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Aliphatic or aromatic peroxide curing agents can also be used, by reac-
tions with vinyl side chains or even saturated alkyl groups.136–137 Specific 
peroxides are chosen on the basis of their decomposition temperatures, 
and the reaction products they leave behind after the curing process is 
complete. Some peroxides used are bis(2,4-dichlorobenzoyl)peroxide, 
benzoyl peroxide, dicumyl peroxide, and di-t-butyl peroxide.117–120, 138

PDMS has also been cured using UV (ultraviolet) radiation,139–142 
gamma or electron beams,143–150 and laser irradiation.151 Thermal cures are 
also available.20, 152–155 Also relevant here are physically cross-linked fluo-
rosilicone elastomers obtained by self-assembly and template polycon-
densation of tailored building blocks.156

Evaluation of the results of any of these curing processes is important, 
including rheological characterization.157 Control of the material during 
cross linking is quite important since movement of the polymer during 
the curing process can affect the mechanical properties of the resulting 
elastomer.158 Some modeling of the vulcanization process has been car-
ried out. Additional work could be very useful for optimizing the proper-
ties of the resulting elastomers.159

Using cyclic polystyrene and cyclic PDMS can give PDMS networks 
with movable cross-link sites160 and some chemistries can yield elasto-
mers in which the cross linking is reversible.161 Also, including the proper 
functional groups on the chains can make PDMS elastomers self-healing 
after rupture.162–163 In an extension of these ideas, the cross linking of en-
capsulated PDMS resins has been used for the self healing of high- 
temperature cured epoxies.164

There has been some interest in cross-linking in solution, since the net-
work chains in the subsequently dried elastomer are “super compressed.” 
These materials can have some unusual properties, including unusually 
high extensibility.165–167

Mechanical property measurements are the most common way to char-
acterize cross linking.115, 168 Different curing methods can give different 
mechanical properties.169 New characterization methods are being devel-
oped, including fluorescence,170 small-angle neutron scattering,171 and 
multiple quantum 1H NMR.

The compounding process can be very complicated.104, 107 The amount of 
some ingredients used is fixed by the stoichiometry of the reaction in 
which they participate. The end-functionalized polymer and the end- 
linking agent are in this category. The relative amounts of other ingredi-
ents are often chosen by experience or by trial and error. After all the 
amounts have been selected, they are mixed (“compounded”) in conven-
tional equipment (e.g., a Banbury mixer). Although the resulting mixture 
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can be fabricated immediately, it is common practice to permit the mate-
rial to “recover” or “age” for a few days. If hardening occurs during this 
period, some remilling (“refreshening”) will be required.

A variety of processing steps may then be carried out. Examples are 
compression molding, injection molding, transfer molding, extrusion, cal-
endering, dispersion coating, and blowing into foams.104, 107

Although some cures can take place at room temperature, most are car-
ried out at elevated temperatures.104, 117–120 Conventional electric, gas or 
forced-air ovens are used, but presumably microwave heating could be 
used as well. There has been some interest in developing polysiloxane 
thermoplastic elastomers.172 Attempts have also been made to model the 
processing various types of polysiloxane materials.173

2.6 ANALYSIS AND TESTING

Infrared and UV spectroscopy are often used to determine the composi-
tion of siloxane copolymers and of mixtures of siloxanes and silicates with 
other species.1, 174 These spectroscopies can also be used to monitor (i) 
vinyl groups introduced to facilitate cross-linking, (ii) phenyl groups to 
suppress crystallization or to improve radiation resistance, or (iii) silanol 
end groups introduced during polymerization and used to determine 
number-average molecular weights, or for chemical reactions such as end 
linking. Some important absorbances are those for Si–O–Si groups at 
1010 cm–1, Si(CH3)2 groups at 800 cm–1, SiCH3 groups at 1260 cm–1, and 
SiH groups at 2200 cm–1. Not surprisingly, these methods are used for 
quality control in the commercial production of siloxane products.1, 174

NMR (nuclear magnetic resonance) is used for a variety of purposes, 
most of which parallel those used to characterize small-molecule sys-
tems.1, 174 In addition to 1H and 13C NMR, 29Si NMR is frequently em-
ployed. These methods are used to characterize chemical composition, 
structural features, and conformational preferences. NMR is also used to 
characterize hybrid inorganic composites, silica-type ceramics, and silox-
ane films.175–176

Specific functional groups are also analyzed by chemical methods. For 
example, the various chlorosilanes can be hydrolyzed and the resulting 
chloride ions determined by titration with silver salts. Si–H groups can be 
determined by measurement of the amount of hydrogen gas evolved 
during hydrolyses. As a final example, silanol groups can be monitored 
through measurement of the amount of methane gas evolved when they 
react with methyl Grignard reagent.1, 174
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It is possible to determine the amount of silicon present by pyrolysis to 
silica, followed by atomic absorption methods.

Both mass spectrometry and gas chromatography are used to identify 
and determine the amounts of volatile siloxane-type materials.1, 174 The 
more important nonvolatile materials, including polymers, can be charac-
terized by liquid chromatography and by gel permeation chromatography 
(GPC). When used analytically, these techniques give molecular weight 
distributions; used preoperatively, they yield narrow molecular weight 
distribution fractions that are suitable for determining structure- 
property relationships. Average molecular weights can be determined by a 
variety of techniques, including dilute solution viscometry, osmometry, 
ultracentrifugation, and light scattering intensity measurements. Other 
techniques for determining molecular weight distributions include frac-
tional precipitation and gradient elution. Extractions with supercritical 
fluids seem particularly promising in this regard.177

Thermal properties are measured and evaluated by common thermal 
analysis instruments. For identification of transition temperatures, heat 
of fusion, differential thermal analysis (DTA), and differential scanning 
calorimetry (DSC) are available. Thermal stability is measured by thermo-
gravimetric analysis (TGA), although this technique can give overly opti-
mistic results unless used with great care.

Rheological measurements are of central importance in the processing 
of siloxane polymers. Typical studies include determination of the de-
pendence of the bulk viscosity on the average molecular weight, molecular 
weight distribution, and rate of shear. Characterization of the effects of 
branched chains or reinforcing fillers present is also of great importance.2

Most siloxane polymers are excellent insulators so electrical properties 
are important for many applications. Such properties include resistivity, 
dielectric constant, dielectric losses, dielectric strength (resistance to 
electrical breakdown), and power factors.2

The use of siloxane polymers in applications such as separation mem-
branes, drug release systems178–179 and blood oxygenators requires exten-
sive permeability studies. These applications also involve measurements 
of diffusivity and solubility.2

For some specialized applications, optical properties can be of crucial 
importance. Two examples are contact lenses and interlayers for glass 
windshields. Here, transparency is of primary importance, but index of 
refraction (n) is important for matching values of n for polymers and fill-
ers.2, 180–181

Applications in the biomedical area require extensive testing of biocom-
patibility,182 including acute, dietary and implant testing, and monitoring 
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toxicological effects such as carcinogenicity, mutagenicity, teratogenicity, 
and bacterial or fungal colonization.2

In the case of siloxane elastomers, the testing of mechanical properties 
is of particular importance. Elongation or tensile measurements are used 
almost to the exclusion of other types of mechanical tests, probably be-
cause of their simplicity. In this way, structural information is obtained 
about the networks, such as their degrees of cross linking.168 Measure-
ments of the ultimate strength (modulus at rupture), and the maximum 
extensibility (elongation at rupture) are also important, as is recovery 
after compression.183 Relating such properties to the chemical nature of 
the siloxane polymer, to the curing conditions, and to the nature and 
amount of any reinforcing filler is a task of paramount importance in the 
area of elastomeric applications.168

Many applications of siloxane materials involve such a complicated 
array of properties that the ultimate evaluation has to involve a “use” test. 
Many surface applications, such as release coatings, are in this category. 
In this approach, the prospective material is tested directly under stand-
ard conditions chosen to mimic those under which the material would ac-
tually be employed.1–2, 174 The advantage of such a test is its direct 
connection with the desired application. The major disadvantage results 
from the fact that the underlying reasons why a material fails are not un-
covered in a global test. One purpose of such analysis is determination of 
the extent to which a polymer has degraded under a specific set of 
conditions.

2.7 DEGRADATION

Polysiloxanes are known to degrade in acids and in bases,33 in the presence 
of clay-like materials,184 and even in the presence of minerals such as alu-
minum oxide.185

Degradation of PDMS at elevated temperatures,186–191 and at various 
levels of humidity192 is relevant to many applications. Decomposition 
products have also been reported after siloxane pyrolysis.193–194 Simula-
tions have been carried out on the thermal decomposition of PDMS using 
a reactive force field,195 or density functional theory.196 Other studies have 
focused on the effects of photons,197 high-energy protons198 or 4He ion 
beams and flammability.199–202 Ablation and deposition of PDMS with 
x-rays have also been reported.203 Degradation of biodegradable polysilox-
anes is of particular importance,204 as is their behavior in biomedical ap-
plications in general.205
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CHAP TER 3

Types of Polysiloxanes

3.1 HOMOPOLYMERS

The polysiloxane of greatest commercial importance and scientific interest 
is poly(dimethylsiloxane) (PDMS), [Si(CH3)2–O–]x, a member of the sym-
metrical dialkyl polysiloxanes, with repeat unit [SiR2–O–]x. This polymer is 
discussed extensively in the following chapters, particularly in chapter 5. 
Other members of this series are poly(diethylsiloxane) [Si(C2H5)2–O–]x, 
and poly(di-n-propylsiloxane) [Si(C3H7)2–O–]x. An example of an aryl 
member of the symmetrically substituted series is poly(diphenylsiloxane), 
with repeat unit [Si(C6H5)2–O–]x.

1–17 This polymer is unusual because of its 
very high melting point and the mesophase it exhibits. The closely related 
polymer, poly(phenyl/tolylsiloxane), has also been prepared and studied.18

The unsymmetrically substituted polysiloxanes have the repeat unit 
[SiRR’O–]x, and are exemplified by poly(methylphenylsiloxane) [Si(CH3)
(C6H5)–O–]x

19–24 and poly(methylhydrosiloxane) [Si(CH3)(H)–O–]x.
25 In 

some cases, one of the side chains has been unusually long, for example 
C6H13, C16H33, and C18H37,

26–27 including a branched side chain—CH(CH3)–
(CH2)m–CH3.27 Another example has methoxy-substituted aromatic frag-
ments as one of the two side chains in the repeat unit.28 Such chains have 
stereochemical variability in analogy with the vinyl polymers such as poly-
propylene [CH(CH3)–CH2–]x and vinylidene polymers such as poly(methyl 
methacrylate) [C(CH3)(C = OOCH3)–CH2–]x.

29 One can also introduce opti-
cally active groups as side chains, the simplest example being the secondary 
butyl group—CH(CH3)(C2H5). Another example involves redox-active den-
dritic wedges containing ferrocenyl and carbonylchromium moieties.30

Other substituents have included phenylethenyl groups,31 cyclic silox-
ane groups,32 and Cr-bound carbazole chromophores.33 In a reversal of 
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roles, some polymers were prepared to have PDMS side chains on a 
poly(phenylacetylene) main chain.34 Siloxane-terminated solubilizing 
side chains are used to improve the properties of thin-film transistors.35

Silalkylene polymers have methylene groups replacing the oxygen 
atoms in the backbone. Poly(dimethylsilmethylene) is an example, 
[Si(CH3)2–CH2]x.

36–46 A variation on this theme is to include aryl groups, 
for example, in poly(dimethyldiphenylsilylenemethylene) [Si(CH3)2–CH2–
Si(C6H5)2]x.

16, 28, 45, 47–55 Other aryl substituents, specifically tolyl groups, 
have also been included as side chains.56–57

It is also possible to insert a silphenylene group [Si(CH3)2–C6H4–] into 
the backbone of the polysiloxane repeat unit to give [Si(CH3)2–C6H4–
Si(CH3)2O–], in which the phenylene can be para or ortho or meta.58–61 A 
specific example is poly(tetramethyl-p-silphenylene-siloxane).13, 45, 48–49, 62–71 
Similarly, it is possible to use anthrylene groups51 or fluorene groups72 in-
stead of phenylene groups.

Most fluorosiloxane polymers73 have the fluorine atoms in alkyl side 
chains74 but preceded by methylene spacers in the side chain to prevent 
the F atoms from destabilizing the chain backbone. The most important 
example of this type is poly((3,3,3-trifluoropropyl)methylsiloxane),75–79 
but other examples include low molecular weight model organosiloxanes 
containing perfluoroether side chains.80 Some fluorinated silsesquioxane 
polymers have also been prepared and characterized with regard to their 
surface tension.81

Fluorine atoms have also been placed on polysiloxanes having aromatic 
side chains (e.g., in poly(phenylmethylsiloxanes)). Examples are poly(4-fluo-
rophenylmethylsiloxane),82–83 poly(3,5-difluorophenylmethylsiloxane),82 
poly(3,5-bis(trifluoromethyl)phenylmethylsiloxane),82 poly(pentafluoroph
enylmethylsiloxane),84 and perfluorocyclobutane aromatic polyethers.85 An-
other interesting example involved hexafluoroisopropanol-functionalized 
polysiloxanes that are being offered as new coating materials for sensors.86 
In some cases, the fluorosiloxane groups were simply used to cap chains of 
polybutadiene.87

More complicated structures have been formed by bridging single poly-
siloxane chains with oxygen atoms to give ladder-like polymers, the most 
common example being poly(phenylsilsesquioxane).16, 52, 88–94

3.2 REACTIVE CHAINS

In the typical ring-opening polymerization, reactive hydroxyl groups are 
automatically formed at the ends of the chains.95–96 Substitution reactions 
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carried out on these chain ends can convert them into other reactive func-
tional groups. These functionalized polymers can undergo a variety of 
subsequent reactions, some of which are listed in table 3.1.97 For example, 
hydroxyl-terminated chains, can undergo condensation reactions with 
alkoxysilanes (orthosilicates).95, 98 A difunctional alkoxysilane leads to 
chain extension, and a tri- or tetrafunctional one to network formation. 
Corresponding addition reactions with di- or triisocyanates provide other 
possibilities. Hydrogen atoms on silicon atoms are sufficiently reactive to 
react with unsaturated groups at elevated temperatures in the presence of 
platinum catalysts Thus, hydrogen-terminated chains can react with mol-
ecules having unsaturated groups, or vinyl chain ends or side groups can 
react with the active hydrogen atoms on silanes.95, 98–99 There are reactive 
hydrogen atoms in the repeat units of poly(hydrogenmethylsiloxane)  
[–SiH(CH3)–O–].25, 100 Other possibilities can be found elsewhere.101

A pair of vinyl or other unsaturated groups can also be linked by their 
direct reactions with free radicals. Similar end groups can be placed on 
siloxane chains by the use of an end blocker during polymerization.102–103 
Reactive groups such as vinyl units can be introduced as side chains by 
random copolymerization involving, for example, methylvinylsiloxane 
trimers or tetramers.95

One of the most important uses of end-functionalized polymers is the 
preparation of block copolymers.102–103 The reactions are identical to the 
chain extensions already mentioned, except that the sequences being 
joined are chemically different. In the case of the—OSiR2R’Y chain end R’ 
is typically (CH2)3–5 and Y can be NH2, OH, COOH, CH = CH2, and so on. 
The siloxane sequences containing these ends have been joined to other 
polymeric sequences such as carbonates, ureas, urethanes, amides, and 
imides. Other functional groups include amines and sulfonic acids,104–105 
ammonium groups,106 epoxides,105 and chloroalkyl groups.107

It is also possible to prepare polysiloxane ionomers. For example, PDMS 
with carboxyl side groups has been prepared with a controlled number of 

Table 3.1.  R E ACTI V E POLY MER S OF THE T Y PE  

X Si(CH3)2O[–Si(CH3)2O–]nSi(CH3)]2X

X Reactant

Hydroxyls,—OH Alkoxysilanes such as [Si(OC2H5)4]

Active hydrogens,—H Unsaturated groups

Unsaturated groups such as—CH = CH2 Active H atoms

" Free radicals
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repeat units between barium, gallium, zinc, or cobalt cations, and a con-
trolled number of such cations per chain.108–110

Groups that are chemically unreactive have also been added to PDMS 
chains. For example, perylene groups have been placed at the ends of the 
chains to induce vesicle formation,111–112 as have been modified bichromo-
poric perylenes to study ordering effects.113 Similarly, anthracenyl groups 
were introduced so that fluorescence spectroscopy could be used to inves-
tigate glass transitions and melting of polysiloxanes.114 Related molecules 
such as pyrene have been introduced by simple doping techniques.115 The 
photochemistry of polysiloxanes has been reviewed recently.116

Polysiloxanes have also been pyrolyzed to give ceramics and organic/
inorganic hybrid materials.117–118 The general topic of pre-ceramic poly-
mers is discussed chapter 9.119

3.3 DENDRIMERS AND HYPERBRANCHED POLYMERS

The literature124–127 describes a number of dendrimers and the closely re-
lated star-like 120–123 polysiloxanes. The hyperbranched polysiloxanes128 
are the primary example of more random structures. Although the em-
phasis has been on synthesis and characterization,129–136 modeling on hy-
perbranched polymers has also been carried out.137 Some of the most 
interesting species involve polysiloxane chains.124–126, 138–139 Star polymers, 
some with nanosized silica cores, have also been synthesized.120, 122–123

Hyperbranched polysiloxanes have been prepared with controllable 
molecular weights and polydispersities,128, 133, 140 with epoxy terminal 
groups132; some are UV-curable130 and some serve as a source of molecular 
silica.129 Hyperbranched polysiloxanes have also been used in the sol-gel 
preparation of polypropylene/silica nanocomposites.134

Heavily branched polysiloxanes can be prepared by a variety of tech-
niques,131 some of which generate hybrid mesostructures.141 Branched and 
linear chains have been compared with regard to their interactions with 
solvents.142

3.4 LIQUID-CRYSTALLINE POLYMERS

3.4.1 Main-Chain Liquid-Crystalline Elastomers

The sequences that give rise to the liquid crystallinity can be in the chain 
backbone, in the side chains, or in both,143 as shown schematically in 
figure 3.1. The polymer in the category that has been the most studied is 
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poly(diethylsiloxane) (PDES) [–Si(OC2H5)2O–],99 which forms a nematic 
mesophase. Relevant studies have include (i) heat capacity,144 (ii) dielectric 
relaxation,145 (iii) nuclear magnetic resonance (NMR) characterization,146 
(iv) structural changes during transitions,147 (v) effects of stretching on 
the transitions,148 (vi) optical properties such as refractive indices and op-
tical rotations,149 (vii) thermoelastic (force-temperature) properties,150 
(viii) mechanical properties in general,151 (ix) end linking of the chains 
into “model networks,”152–153 (x) effects of molecular weight,154 (xi) charac-
terization using atomic force microscopy155 or x-ray diffraction,156 (xii) 
thermopolarization effects (cooling a heated sample in an electric field),157 
(xiii) solution properties26 and swelling behavior,153 (xiv) segmental orien-
tation,158 (xv) responses of guest chains in deformed PDES elastomers159 
and the properties of blends.160

One item of great interest with regard to these materials is the temper-
ature at which the nematic liquid-crystalline phase becomes isotropic.99 
Table 3.2 lists such isotropization (“clearing”) temperatures Ti for a variety 
of symmetric polysiloxanes polymers having repeat units [Si((CH2)mCH3)2–
O–]. Although the focus is on PDES (m = 1), PDMS with m = 0 is included 
for comparison. The table includes polymer molecular weights (M) where 
important, and some relevant melting points, Tm. PDMS is very different 
from PDES in that it does not show a liquid-crystalline phase. This situa-
tion is explained in connection with table 3.2. PDES shows values of Ti 
that decrease with decreasing in molecular weight. In fact, the liquid- 
crystalline phase does not form at all if M is below approximately 25,000 g 
mol–1.99 This situation is in sharp contrast to the behavior of low molecular 
weight liquid-crystalline molecules; many cholesterol molecules that show 
mesophases have molecular weights down in the hundreds.161

Figure 3.1:
Liquid-crystalline polymers in which the mesomorphic sequences occur in the chain 
backbone, in the side chains, or in both.
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Since stretching a PDES aligns the chains in the direction of the liquid-
crystalline structures, the values of Ti should also increase with elonga-
tion,99 as has been found experimentally.150 As expected, the values of Ti 
level off at higher elongations.

There are a number of other acyclic polysiloxanes. For example, symmetric 
polysiloxanes having m = 2–9 have been investigated, with some properties 
listed in several handbook articles.162 These specific polymers and some recent 
relevant studies on them are (i) poly(di-n-propyl-siloxane),163–165 (ii) poly(di-n-
butyl-siloxane),163, 166 (iii) poly(di-n-pentyl-siloxane,152, 163 (iv) poly(di-n-hexyl-
siloxane),152,         163 (v) poly(di-n-heptyl-siloxane),167 (vi) poly(di-n-octyl-siloxane),167 
(vii) poly(di-n-nonyl-siloxane),167 and (viii) poly(di-n-decyl-siloxane).152, 167, 99

The isotropization temperatures show an interesting increase with in-
creasing m, the number of methylene groups in the side chains.168 The melt-
ing points of the same polymers also increase with m, but with a smaller 

Table 3. 2.  TR A NSITION TEMPER ATUR ES FOR SOME SY MMETR IC 

POLYSILOX A NE EL A STOMER S H AV ING R EPE AT UNITS [Si((C 2)mCH3)2–O–]

Polymer m 10–3M (g/mol) Tm(o C) Ti(
o C)

Poly(dimethylsiloxane)a 0 High –43 None

Poly(diethylsiloxane)b 1 765 — 53

“ “ 425 — 52

“ “ 172 — 46

“ “ 100 — 34

“ “ 58 — 23

“ “ ~25 — None

Poly(di-n-propyl-siloxane)c 2 87 — 207

“ “ 68 — 177

“ “ 51 — 172

“ “ 43 — 145

“ “ ~10 — None

Poly(di-n-butyl-siloxane)c 3 128 — 299

“ 3 28 — 216

Poly(di-n-pentyl-siloxane)c 4 High — 330

Poly(di-n-hexyl-siloxane)c 5 “ — 330

Poly(di-n-heptyl-siloxane)d 6 “ 375e None

Poly(di-n-octyl-siloxane)d 7 “ 28e None

Poly(di-n-nonyl-siloxane)d 8 “ 31e None

Poly(di-n-decyl-siloxane)d 9 “ 47e None

aSee note 345.
bSee note 154.
cSee note 346.
dSee note 167.
eCrystallization of the side chains, rather than the backbones.
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slope. The two lines cross in such a way that the predicted value of Ti for 
PDMS lies below the melting temperature, Tm, meaning that PDMS does not 
show a liquid-crystalline phase because it crystallizes before it gets to Ti.

99

Another interesting feature of the table pertains to the melting points 
for polymers having m = 6–9. The side chains are now long enough to crys-
tallize. Such side-chain crystallization has also been seen in polysilane 
homopolymers169 and chemical copolymers of polyethylene,170–171 (so-
called linear low-density polyethylene). In any case, such crystallization 
presumably could interfere with the mesophases that might otherwise 
form.99

Some polysiloxanes have cyclic groups in the backbone, typically cyclics 
of –Si(CH3)2–O– units of various sizes, or such siloxane units mixed with 
some carbosiloxanes (with additional –CH2– sequences).164, 172–176 The 
cyclic portions can add considerable stiffness, resulting in isotropization 
temperatures above the decomposition temperatures.

One aspect of the mechanical properties of these polymers is the in-
crease in the isotropization temperatures with increasing elongation.177–179 
Interesting examples are the elongation results reported for PDES as a 
function of mesomorphic structure.148 The tensile curves differ greatly de-
pending on the amount of mesophase present.99 Specifically, for low meso-
phase content, the isotherms are similar to those of natural rubber, with 
upturns in force at high elongations. In the case of larger amounts, the 
curves show yield points akin to those shown by partially crystalline poly-
mers. Crystallinity may be either present initially or induced by the defor-
mation. Elongation-retraction curves demonstrate that formation of a 
second phase leads to irreversibility in the stress-strain isotherms.148 The 
larger the elongation during the deformation, the larger the irreversibility 
(hysteresis) upon retraction.

In some cases, smectic ordering has been observed.180 There is also interest 
in phenylpyrimidine liquid-crystalline hosts181 and ferroelectric organosilox-
anes.182 Results on chain dynamics have also been reported for polysiloxanes 
containing p-phenyleneterephthalate,183 or polyimide mesogens.184

3.4.2 Side-Chain Liquid-Crystalline Elastomers

The units giving rise to the liquid-crystalline behavior can be in the side 
chains.99, 185–187 Although most of the polymers studied have been linear, 
there has been some work on hyperbranched188 or comb-like structures.189 
The orientation of the mesogenic groups is important.190–191 Frequently back-
bones include siloxanes and acrylates,192–195 but a variety of other structures 
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have also been studied, including amphiphilics.141, 196–209 Side chains have 
included chiral groups210–212 and groups capable of hydrogen bonding.213

The side chains in these structures can rearrange either parallel or per-
pendicular to the deformed chain backbone,214 as illustrated in figure 3.2. 
The outcome depends on the nature and length of the flexible spacer con-
necting the mesogenic groups to the chain backbone. As expected, the 
physical properties can become strongly anisotropic.215

Side-chain liquid-crystalline materials can be oriented by imposing an 
electric or magnetic field.216 The chains can also be aligned when deformed 
(generally in elongation but also in some cases in compression) and cross 
linked into network structures. The focus in these experiments was how 
the mechanical deformation affected the nature of the mesophase (in par-
ticular its axial direction relative to the direction of the strain) and its 
isotropization temperature. The studies generally involved measurements 
of both stress and birefringence as a function of strain, and the ratio of 
the former to the latter (the “stress-optical coefficient”). The mesogenic 
behavior of such networks obviously depends strongly on their structures. 
The effects of degree of cross linking, and composition in the case of copo-
lymers, for example, have been documented.217

The phase transitions depend significantly on spacer length, as has 
been demonstrated for oligo-oxyethylene spacers.218 Closer coupling be-
tween the mesogenic groups and the polymer backbone tends to make the 
system more sensitive to the mechanical deformation, at least in the case 
of methylene groups in the spacer.219

Relatively high degrees of cross linking can be introduced without de-
stroying the liquid crystallinity.222 Cross linking can generally be induced 

Figure 3.2:
Approximately parallel and perpendicular arrangements of mesogenic side groups on a 
chain backbone stretched in the vertical direction.
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by gamma radiation or chemical means.220–221 IR (infrared) spectroscopy 
and stress-strain measurements in extension indicate that relatively low 
strains can frequently induce significant organization. One relevant ex-
periment involved two cross-linking procedures: the first cross linking 
produced a network in which the mesogenic units could be oriented223; the 
second subsequently locked in the network anisotropy. Samples were clear 
and x-ray diffraction patterns were characteristic of a highly ordered nem-
atic material. Transitions from the isotropic phase to the nematic phase 
caused significant increases in sample length. Using one or two cross-link-
ing agents in the presence of a magnetic field could also be used to prepare 
“monodomain” nematics in which the director alignment is claimed to be 
macroscopically uniform.192

The thermoelastic behavior of these materials has also been reported.224 
Such experiments resolve the thermodynamics of the nematic to isotropic 
transition into entropic and enthalpic contributions.193

Also in this category are side-chain cholesteric liquid-crystalline poly-
siloxanes containing groups of varying rigidity,225 thermotropic liquid-
crystalline polyimides with siloxane linkages,226 and fluorine-containing 
liquid-crystalline polysiloxanes having cholesteryl cinnamate mesogens 
and trifluoromethyl-substituted mesogens.227

Although experimental studies have been of the greatest interest by far, 
there has been some molecular modeling of side-chain liquid-crystalline 
polysiloxanes.228

Two of the most recent applications of these materials are in the areas 
of electrorheology229 and holography.230

3.5 CYCLICS

3.5.1 Introduction

The synthesis of polysiloxanes generally produces significant cyclics as well 
as linear chains. A number of studies report equilibrium cyclic concentra-
tions under various conditions.231–241 Cyclic polysiloxanes have also been 
prepared in dilute solutions by cyclodepolymerization of linear dihydroxy-
PDMS,242 or ring-closing dehydrocoupling of dihydroxy-PDMS and di-
hydro-PDMS.243 Diels-Alder reactions have also proved useful for the 
production of high-purity cyclics,244 as have been polyfunctional cage oli-
gosilsesquioxanes by thiol-ene additions.245

Considerable information on polysiloxane cyclics is available in reviews 
of cyclic polymers in general.246–251 Considerable attention has been paid to 
cyclics of poly(dimethylsiloxane),252 poly(phenylmethylsiloxane),253 and  
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poly(vinylmethylsiloxane).254 Other molecular systems also produce cyclics 
and general methods have been developed for carrying out cyclizations.255–266 
Organofunctionalized cyclotrisiloxanes have also been reported.267 Inter-
esting comparisons have been made with results on poly(ethylene oxide),268 
poly(ε-caprolactones),269 polystyrene,270 and DNA.271

Cyclic structures also provide conceptual frameworks in some molecu-
lar dynamics simulations.272–273

3.5.2 Miscellaneous Properties of Polysiloxane Cyclics

The conformational dynamics of PDMS cyclics of various sizes have been 
studied by ultrasound.274 The magnitudes of the dispersions obtained 
were used to estimate energy differences between stable and less-stable 
conformations. Analogous information has been obtained using excimer 
emission from small probes placed into a cyclic PDMS.275 Chemical shifts 
and relaxation times in the 29Si NMR spectra of cyclic PDMS have also 
been used for this purpose.276–277 There has been work with regard to the 
structure and dynamics of cyclics in general,278 including percolation of 
linear polymers in melts of cyclic polymers.279

PDMS cyclics were combined with γ-cyclodextrins to form “slide ring” 
gels in which the usual cross links in a network structure are replaced slid-
ing linkages through which the polymer chains are threaded.280 Similar 
reactions with γ-cyclodextrins occur even in the case of linear chains of 
PDMS.281 Related “disk-necklace” structures were obtained by connecting 
disk-shaped entities (the cyclics) by flexible linking agents.282 Also, cate-
nate structures have been studied,283 and “Olympic” networks of inter-
linked PDMS cyclics may have been formed in some reactions.284–285 
“Knotted” ring polymers also exist.286 Finally, PDMS cyclics have been 
studied as “pseudo crown ethers” for the binding of metal cations.287

In some cases, cyclic and linear PDMS have been combined to form “con-
etworks,”288 and unsaturated cyclic side-chain fragments have been placed 
into polysiloxanes to make them thermoreactive.289 Interactions between 
ring polymers have also been analyzed and related to loops in chromatin.290 
Also, some cyclic oligosiloxanes having polar end groups show liquid-crystal-
line behavior, specifically smectic A and E phases.291 Finally, several PDMS 
cyclics have been exposed to vacuum pyrolysis and the products analyzed by 
matrix-isolation spectroscopy.292 The pyrolysis products obtained under a 
variety of conditions identified the radical reactions that were involved.

With regard to simulations, improved Monte Carlo methods have been 
developed for characterizing cyclic polymers in the melt.293 A simple 
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lattice is employed, and kink translocations are introduced to speed up 
the computations. Similarly, Monte Carlo simulations have been used to 
calculate dimensions of ring polymers294–296 and excluded volume effects 
in semiflexible ring polymers.297 Monte Carlo simulations have also been 
used to characterize stiffening transitions in semiflexible cyclics.298 Mo-
lecular dynamics simulations have given interesting information on both 
static299–300 and dynamic properties 299–301 of cyclic polymers. A self- 
consistent field theory for Gaussian ring polymers is also available.302 Di-
mensional analyses using a scaling model have been used to describe 
cyclic molecules in general, including those of PDMS.303 Finally, simula-
tions have been carried out on the cyclization of α,ω-telechelic chains.304

3.5.3 �Comparisons Between Polysiloxane Cyclics and Polysiloxane  

Linear Chains

There have been many comparisons of cyclic polysiloxanes with the corre-
sponding linear chains of the same molecular weight. Table 3.3 provides 

Table 3.3.  COMPA R ISONS BET W EEN C YCLIC POLYSILOX A NES A ND LINE A R 

POLYSILOX A NES OF THE SA ME MOLECUL A R W EIGHT

Property Polymer
Value of property for 

cyclics relative to linears Reference

Intrinsic  

viscosities

Poly(dimethylsiloxane) Lower 347–348

Gel permeation 

chromatography

“ Both gave sharp  

fractions

349–350

Chain dimensions “ Lower 351

Bulk viscosities “ Higher at low M, but  

lower at high M

352

Diffusion  

coefficients

“ Higher 353–356

Effects of heat “ Both show bond  

interchanges

357–358

Second virial 

coefficients

“ Lower 359

Radii of gyration 

(Monte Carlo)

“ Lower 360

Ellipsoidal shapes 

(Monte Carlo)

“ Lower asymmetry 361

(continued)
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Property Polymer
Value of property for 

cyclics relative to linears Reference

Dipole moments “ Lower 362

Particle scattering 

functions (Monte 

Carlo)

“ Cyclics show maxima 363

Surface pressures  

of monolayers

“ Higher plateau levels 364

Glass transition 

temperatures

“ Higher 305

Crystallization “ Only low M cyclics and  

linear chains resist 

crystallization

365

Lower critical 

solution  

temperatures

“ Higher 366

Upper critical 

solution  

temperatures

“ Lower 367

Critical masses  

for entangling

“ No significant difference 368–369

Densities “ Higher 370

Adsorption  

onto silica

“ Higher at low M, but lower  

at high M

371

Chain length 

dependence of α 

transition 

temperatures

“ Increase for cyclics but 

decrease for linear chains

372

Gel permeation 

chromatography

Poly(phenylmethylsiloxane) Both gave sharp fractions 373

Radii of gyration 

from neutron 

scattering

“ Lower 374–376

Glass transition 

temperatures

“ Higher 377

Dielectric  

relaxations

“ Cyclics have higher  

dipolar cancellations

378

Intrinsic viscosities Poly(vinylmethylsiloxane) Lower 379

Bulk viscosities “ Higher at low M 379

Densities “ Higher 379

Glass transition 

temperatures

“ Higher 379

Table 3.3   (CONTINUED)
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examples. In general, differences that appear at low molecular weight can 
decrease significantly at higher molecular weight, as occurs in the case of 
the glass transition temperature.305 Figure 3.3 illustrates this effect. Cut-
ting a skeletal bond in a cyclic of high molecular weight can have much less 
effect on some properties than cutting a skeletal bond in a smaller cyclic, 
as illustrated schematically in figure 3.4.

3.6 OTHER NOVEL MATERIALS

3.6.1 Blends

There have been numerous studies of blends based on the polysiloxanes.306 
Blends with polystyrene are of particular interest, 307–312 including some 
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Figure 3.3:
The asymptotic effect of molecular weight on some property such as the glass transition 
temperature for cyclic and linear polysiloxanes.305

Vs.

Vs.

Figure 3.4:
Cutting a cyclic to form two chains (solid circles) can have less of an effect in the case of 
high molecular weight.
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with the syndiotactic polymer.313 Other vinyl polymers have included 
acrylics,314–315 poly(vinyl chloride),316 polypropylene,317 ethylene-propyl-
ene-diene monomer elastomers,318 and ethylene-octene copolymers.319

Other studies have focused on poly(dimethylsiloxane) blended with 
polycarbonates,320–322 polyisobutylene,323 poly(ethylene oxide),324 polyure-
thanes,325 epoxies,326–327 benzoxazines,328–329 and poly(hexylthiophene).330 
In some cases, a polysiloxane oil was blended into polypropylene to facili-
tate its processing.331 A variety of other siloxane materials have been  
employed—for example, poly(diethylsiloxane),332 polyurethanes,333 fluori-
nated siloxane copoymers334 and fluororubbers in general,335 and trimethyl-
siloxy silicates.336

3.6.2 Ceramic Phases and Coatings

Pyrolyses of siloxane materials leads to ceramic-like phases. For example, 
ceramic fibers based on silicon carbide have been prepared from polycar-
bosilane/polymethylphenylsiloxane polymer blends.337

PDMS coatings have been made less oleophobic by modifying them 
using copolyacrylate side chains some of which are semifluorinated or 
PDMS itself.338 Also relevant here are UV-curable bismaleimides contain-
ing PDMS as hydrophobic agents.339

3.6.3 Micropatterned Materials

PDMS emerged as the polymer of choice for micropatterned surfaces 
and microfluidic devices. Fabrication is particularly straightforward 
since PDMS can be cast against a suitable mold with high fidelity. The 
optical, thermal, interfacial, permeability, and reactivity properties of 
PDMS make possible numerous functionalities including optical detec-
tion, reversible deformation, reversible wetting, and management of 
cell proliferation.340

3.6.4 Nanof ilaments and Molecular Wires

Metallic nanowires with vertical alignment have been prepared on  
silicone substrates using a nanoporous alumina template.341 The fact  
that the substrate is flexible should be an advantage in a number of 
applications.
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3.6.5 Thermosets

Siloxanes that are extremely heavily cross linked can be thought of as 
thermosets, which have some interesting glass-like properties.342 Copoly-
meric analogues have also been prepared, by combining siloxanes with 
epoxy resins,343 or with polybenzoxazine prepolymers.344
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CHAP TER 4

Some Characterization Techniques 
Useful for Polysiloxanes

4.1 GENERAL COMMENTS

The general approach used in choosing a polymer suitable for a particular 
application is:

↔ ↔ ↔Polymerization Structure Properties Application

For example, if one wants a polymer for fire-resistant fabrics, then a poly-
mer with good high-temperature properties is required, which implies ar-
omatic structures, which suggest condensation polymerizations. More 
relevant here, however, would be that a polymer remains elastomeric at 
low temperatures. This requirement evokes a polymer with high flexibility 
(low glass transition temperature), which indicates use of the polymeriza-
tion techniques used with the polysiloxanes.

4.2 OPTICAL AND SPECTROSCOPIC TECHNIQUES

An example of a relevant optical property is the birefringence of a de-
formed polymer network.1 This strain-induced birefringence can be used to 
characterize segmental orientation, and both Gaussian and non-Gaussian 
elasticity.2–9 Infrared dichroism has also been helpful in this regard.10, 11 In 
the case of the crystallizable polysiloxane elastomers, orientation is of crit-
ical importance with regard to strain-induced crystallization and the tre-
mendous reinforcement it provides.11 Segmental orientation has also been 
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characterized by fluorescence polarization, deuterium nuclear magnetic 
resonance (NMR), and polarized infrared spectroscopy.1, 3, 12

Infrared spectroscopy has been used to characterize the structures of 
silica-filled polydimethylsiloxane (PDMS).9, 13–15

Other optical and spectroscopic techniques are also important, includ-
ing positron annihilation lifetime spectroscopy,16, 17 spectroscopic ellip-
sometry,18 confocal Raman spectroscopy,19 and photoluminescence 
spectroscopy.20 Surface-enhanced Raman spectroscopy has been made 
tunable using gold nanorods and strain control on elastomeric PDMS 
substrates.21

4.3 MICROSCOPIES

A great deal of information is now being obtained on filler dispersion and 
other aspects of elastomer structure and morphology through the use of 
scanning probe microscopy, which consists of several approaches.22–27 One 
approach is that of scanning tunneling microscopy (STM), in which an ex-
tremely sharp metal tip on a cantilever is passed along the surface while 
measuring the electric current flowing through quantum mechanical tun-
neling. Monitoring the current then permits maintaining the probe at a 
fixed height above the surface. Display of probe height as a function of sur-
face coordinates then gives the desired topographic map. One limitation of 
this approach is the requirement that the sample be electrically conductive. 
Atomic force microscopy (AFM), on the other hand, does not require a con-
ducting surface. The probe simply responds to attractions and repulsions 
from the surface, and its corresponding downward and upward motions are 
directly recorded to give the relief map of the surface structure. The probe 
can be either in contact with the surface or adjacent to it, sensing only Cou-
lombic or van der Waals forces.

Both transmission electron microscopy and AFM have been used to 
characterize the structures of silica-filled PDMS.7, 28 Another example of 
an application to polysiloxane elastomers is the characterization of 
binodal and spinodal phase-separated structures occurring in model 
PDMS networks.29–31

4.4 NUCLEAR MAGNETIC RESONANCE

Although NMR has been used to characterize some aspects of polym-
erization (e.g., copolymerization kinetics),32 the applications most 
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relevant here have to do with the structure of the linear polymers or 
cross-linked networks.33–35 In this regard, NMR has been much used 
to study the characteristics of the polysiloxanes, particularly with 
regard to orientation,36, 37 molecular motion,38–46 and the effect on the 
diffusion and other properties of small molecules.47–50 Small-molecule 
diffusion is particularly relevant to the properties of silicone breast 
implants, and NMR has been extensively used to image such im-
plants.51–55 Aspects related to the structure of the networks include 
the degree of cross linking,56–58 the distribution of cross links,59, 60con-
centration of pendant chains,61 elastic stress,62 and topology.63–65 An-
other example is the use of NMR to clarify aging and phase separation.66 
Deuterium NMR has also been used to determine segment orientation 
distributions in polymer networks, including those of PDMS.67, 68

Dipolar coupling constant distribution analyses have been carried out 
using proton multiple-quantum NMR on elastomers, including unimodal 
and bimodal PDMS materials.69 Also, a universal polymer analysis tech-
nique has been developed using 1H NMR on complementary trimethylsilyl 
end groups placed on the polymer.70

Most elastomers require reinforcing fillers to function effectively, and 
NMR has been used to characterize the structure of such composites as 
well. One examples is the adsorption of chains onto filler surfaces,71, 72 
and the strong absorption of these chains into “bound rubber”—for ex-
ample, PDMS immobilized onto high surface area silica.41, 46 Another ex-
ample is the use of NMR to image the filler or polymer itself.73–80 NMR 
has also been used to study the phase separation and order of water mol-
ecules and silanol groups in polysiloxane networks81 and the activation of 
transport and local dynamics in polysiloxane-based salt-in-polymer 
electrolytes.82

4.5 THERMOPOROMETRY

Thermooporometry involves measuring the crystallization temperatures 
Tc of small molecules constrained within a porous medium. The pores 
keep the crystallites from growing beyond the size of the pore leading to 
a large surface area to volume ratio. The interfacial free energy is positive, 
which destabilizes the crystallites and decreases Tc. The average values 
can be used to estimate average pore sizes, and the distribution of Tcs can 
be used to determine the pore size distribution. The technique was origi-
nally applied to inorganic materials such as glasses,83 mesoporous silica,84 
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alcogels,85 or zeolites.86 Similar decreases in Tc are observed in nanocrys-
tals or metal clusters prepared for use as “quantum dots.”87, 88

Swollen elastomers have domains of solvent between the network 
chains that may also be considered “pores.” Thermoporometry is useful to 
characterize the pore size and size distribution in such gels. Examples in-
clude natural rubber,89, 90 styrene-divinyl benzene polymers,91 poly(ethylene 
oxide),92 polyethylene and polypropylene,93 and ethylene-propylene-diene 
polymers and cis-polycyclo-octene.94

Relevant here are the corresponding studies on polysiloxane gels such 
as PDMS of various degrees of cross linking (giving various pore sizes). 
The samples are either unfilled95–97 or filled with silica.96 Aged PDMS has 
also been studied.98 In some cases, PDMS networks were prepared by end-
linking chains, to have known values of the molecular weight between 
cross links. These model elastomers had chain-length distributions that 
were unimodal,99, 100 bimodal,99 or trimodal.99

The effects of constraints in general on the freezing temperature have 
been studied theoretically, specifically in an entanglement/frozen tube 
model,101 and by molecular dynamics simulations.102 Confinement of liq-
uids also affects the glass transition temperature, which typically de-
creases as the pore size decreases.103–105

4.6 SCATTERING OF LIGHT, X-RAYS, AND NEUTRONS

Static and dynamic light scattering have been used to investigate PDMS in 
both liquid and supercritical carbon dioxide.106 The solvent quality of the 
CO2 was found to be adjustable by independently varying temperature or 
density. The results give the theta temperature and strength of excluded 
volume interactions.107

Small-angle scattering techniques have been applied to polysiloxane 
materials. One important example is the characterization of fillers intro-
duced into polysiloxane elastomers, or the reverse, the incorporation of 
such elastomers into ceramic matrices (in both cases to improve mechan-
ical properties).3, 108, 109 Another example is characterization of the ani-
sotropy induced by strain in silica-PDMS composites.110 Chapter 9 
describes some of this work. Elastic neutron scattering can be illustrated 
by the characterization of polysiloxane blends,111 and quasielastic neu-
tron scattering by studies of the dynamics of PDMS.112 There have also 
been Monte Carlo calculations of PDMS particle scattering functions, 
including how they varied with chain length, chain structure, and 
temperature.113
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4.7 BRILLOUIN SCATTERING

The application of Brillouin scattering to the characterization of PDMS 
networks was found to be particularly useful for looking at glassy-state 
properties of such elastomers at very high frequencies.114–116

4.8 PULSE PROPAGATION

Another example of a relatively new technique for the noninvasive, non-
destructive characterization of network structures involves ultrasound 
pulse-propagation measurements.117, 118 The goal here is the rapid determi-
nation of the spacing between junctions and between entanglements in a 
network structure. The delay in a pulse passing through the network is 
used to obtain such information on the network structure.114 Ultrasonic 
methods have also been used to study interdiffusion between two samples 
of PDMS differing only in molecular weight.119

This list is essentially an extension of parts of chapter 2, and many of 
the techniques described here are also useful for characterizing the com-
posites described in chapter 9.

4.9 THEORY AND SIMULATIONS

Some of the earliest studies involved determination of the potential func-
tion governing low-frequency bending modes of disiloxane,120 the impor-
tance of (p-d)π bonding,121 characterization of helical polysiloxane 
chains,122 the molecular states of silicon-containing compounds in gen-
eral,123 ab initio structure calculations124 and molecular modeling of elas-
tic behavior.125 More recent examples include molecular dynamics and 
integral equations,126 force fields,127, 128 and finite element simulations of 
mechanical property evolution during vulcanization.129 Artificial intelli-
gence approaches have been used in the polysiloxane area, including stud-
ies of synthesis, solution properties, metal ion sorption, liquid-crystalline 
behavior, and fluorescence of composites containing complexed rare 
earths.130

Simulations and theoretical calculations have also been carried out for 
PDMS networks131–133 and single chains134, 135 under deformation. Finally, 
investigations have clarified important aspects of polysiloxane permea-
bilities,136, 137 interfacial structure,138 and elasticity using an expansion 
approach.139
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CHAP TER 5

General Properties

5.1 SOME GENERAL INFORMATION

Many of the properties of the polysiloxanes have been tabulated in hand-
books of polymer science and engineering.1–3 Recent work has included 
the stretching of polydimethylsiloxane (PDMS) chains,4 in some cases to 
their rupture points.5

The nature of the bonding in siloxane molecules has been of long-
standing interest.6–9 Force fields for calculations of PDMS properties have 
been revised over the years and are now at an advanced state of develop-
ment.10–13 Some of the simplest approaches employ the methods of mo-
lecular mechanics.14 Most of the experimental results have been obtained 
on solutions of polysiloxanes in thermodynamically good solvents.15

5.2 CONFORMATIONS AND SPATIAL CONFIGURATIONS

5.2.1 Symmetrically Substituted Polysiloxanes

The first member of this series, poly(dimethylsiloxane) (PDMS),  
[–Si(CH3)2O–]x, has been studied extensively with regard to its 
configuration-dependent properties.16–21 PDMS (figure 2.1) is very similar 
in structure to the polyphosphate chain in that the successive bond angles 
are not equal. The Si–O bond length in polysiloxanes is 1.64 Å, and bond 
angles at the Si and O atoms are 110 and 143°, respectively. This inequality 
of bond angles causes the all-trans form of the molecule (with rotational 
angles φ = 0°) to form a closed structure after approximately eleven repeat 
units. The torsional barrier for rotations about the skeletal bonds is very 
low, which accounts for the high dynamic flexibility and low glass 
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transition temperature of the PDMS chain. Not surprisingly, low tempera-
ture properties are superb.22

Trans states are of lower energy than gauche states (φ = ±120°) in the 
PDMS chain.16, 17, 20, 21 This conformational preference may arise from 
favorable van der Waals interactions between pairs of CH3 groups sepa-
rated by four bonds in trans states. This factor is apparently more im-
portant than favorable coulombic interactions between oppositely 
charged Si and O atoms separated by three bonds, which are larger in 
gauche states because of the reduced distance. Comparisons between ex-
perimental and theoretical values of various configuration-dependent 
properties, however, yield a value for this energy difference that is sig-
nificantly larger than that obtained from the semi-empirical calcula-
tions of interactions between nonbonded atoms. Conformations 
involving the unlike pairs g±g∓ about O–Si–O skeletal bond pairs give 
rise to “pentane-type interferences”16, 17, 20, 21 between the bulky Si(CH3)2 
groups. Such configurations are therefore completely excluded. The 
same conformations about Si–O–Si bond pairs cause interferences be-
tween the smaller O atoms; these configurations can occur with low 
probability. Conflicting arrangements between groups separated by 
four bonds can be visualized by rotations about pairs of consecutive 
skeletal bonds in figure 2.1.

There is renewed interest in relating conformational descriptions to 
crystal structures,23 which has raised questions about the applicability of 
this simple rotational isomeric state model to wide-angle scattering re-
sults.24 Conformational rearrangements have been reported for PDMS 
chains at the air/water interface,25 and near surfaces of silica26 or mica.27

The equilibrium flexibility of PDMS can be characterized by its unper-
turbed dimensions, as measured by characteristic ratio <r2>o/nl2 of the 
unperturbed dimensions of the chain relative to the product of the number 
n of its skeletal bonds and the square of their length, l. Experimental 
values of this ratio are in the range 6.2–7.6, the precise value depending on 
the nature of the solvent.28 The origin of this “specific solvent” effect is 
obscure but may involve specific interactions between solvent molecules 
and polymer segments in a way that changes the conformational prefer-
ences in the chain. The effect is significant only in the case of polar poly-
mers. The unperturbed dimensions appearing in the definition of the 
characteristic ratio also appear in the equations for the modulus of the 
chains when cross linked into an elastomeric network. Not surprisingly, 
therefore, the specific solvent interactions can effect the modulus of swol-
len PDMS networks as well as the dimensions of isolated PDMS chains in 
solution.29
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The characteristic ratio of PDMS is known to increase with increasing 
temperature. Numerous computations have been carried out to interpret 
this result.16, 20, 21, 30 Thermal expansion is expected since the low energy 
conformation is the closed polygon discussed in section 1.1, figure 1.1,16, 

20, 21 and an increase in temperature provides thermal energy for switch-
ing from these compact, low-energy conformations to higher-energy 
states that are less compact.

Comparisons between the experimental and theoretical values of the 
characteristic ratio and its temperature coefficient give values of the 
chain conformational energies, which are then used to predict a number 
of other configuration-dependent properties. Dipole moments calcu-
lated in this way are in excellent agreement with experiment for small 
chain length; the agreement at longer chain length is less satisfactory, 
possibly because of the large specific solvent effect31 already mentioned. 
Additional information on the dipole moments of siloxanes is given in 
section 5.5

Stress-optical coefficients have been determined using PDMS networks 
both unswollen and swollen with a variety of solvents. Only qualitative 
agreement was obtained, presumably because of the vanishingly small opti-
cal anisotropy of the PDMS chain.17 Similar studies have been carried out on 
other polysiloxanes16, 20, 21—for example, on poly(methylphenylsiloxane)32 
and poly(tetramethyl-p-silphenylene-siloxane).33

Molecular mechanics and more sophisticated computational techniques 
are being applied to siloxane conformational problems to study both the 
chain backbone and the side chains,34 and polysiloxane molecular motions 
in general.35

It is interesting to note that the PDMS chain and polyphosphate chain 
have approximately the same characteristic ratio. Isolated gauche states, 
of relatively high spatial extension, are more prevalent in the polyphos-
phate chain, but pairs of gauche states (g±g±) of the same sign are less prev-
alent so the two effects largely offset one another.

Much experimental and theoretical work has been reported on the cy-
clization of dimethylsiloxane chains, and on the properties of these cy-
clics.36–41 Cyclization has been investigated for a wide range of polymer 
chain lengths, but in this chapter we discuss only the results for the be-
havior of long chains. The interpretation of the results for shorter chains 
may be complicated by failure of the Gaussian distribution function em-
ployed for the end-to-distances, directional correlations between termi-
nal bonds prior to cyclization, ring-strain contributions to the heat of 
the reaction, and the need to revise some of the statistical weight factors 
for the chains. In the limit of large chain length, the agreement between 
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theory and experiment is excellent and thus supports the proposed 
model for PDMS. In addition, cyclization studies have generated useful 
information on excluded volume effects (their absence in the undiluted 
amorphous state and their magnitudes in solutions, particularly at high 
polymer concentrations), the critical chain length at which the Gaussian 
distribution becomes inaccurate, the magnitude of specific solvent ef-
fects, and the validity of gel permeation chromatography theories per-
taining to both linear and branched chain molecules.

Physical properties of cyclics in comparison with linear chains of the 
same degree of polymerization have been investigated extensively,37, 38, 42 
as described in chapter 3. Example of such comparisons are solution 
viscosity-molecular-weight relationships, bulk viscosities, densities, re-
fractive indices, glass transition temperatures, 29Si NMR (nuclear mag-
netic resonance) chemical shifts, chain dimensions from neutron 
scattering, diffusion coefficients and their concentration dependence, 
thermal stability, second virial coefficients, radii of gyration, equilibrium 
shapes (from Monte Carlo simulations), static dielectric permittivity, par-
ticle scattering functions, monolayer surface pressures, melting points, 
theta temperatures (at which the chains are unperturbed by excluded 
volume effects),16 critical temperatures for phase separations, melt mobil-
ity (by excimer emission), and conformational dynamics (by ultrasonic 
relaxation measurements).

Other symmetrically substituted polysiloxanes have been investi-
gated less thoroughly.17 Poly(diethylsiloxane) [–Si(C2H5)2–O–]x has been 
reported to have a characteristic ratio of 7.7 ± 0.2, which is essentially 
the same as that of PDMS; its dipole moment is difficult to measure be-
cause of the low polarity of the repeat unit, but it too is approximately 
the same as that of PDMS. These results suggest that lengthening of the 
side chains must generate self-compensating effects. Furthermore, 
poly(di-n-propylsiloxane) [–Si(C3H7)2–O–]x has been reported to have a 
characteristic ratio of 13.0 ± 1.0.43 The high spatial extension in this 
chain could result from the fact that an articulated side chain, such as  
–CH2CH2CH3, can adopt more conformations in the form of trans-gauche 
states along the chain backbone than in the more restrictive trans-trans 
states shown in figure 5.1. Although this “entropic destabilization” of 
compact trans states would increase the chain dimensions, the large in-
crease in the characteristic ratio over that for PDMS would not have been 
anticipated. This intuitive conclusion is supported by some rotational 
isomeric state calculations that do take into account the conformational 
variability of the siloxane side chains. It should be mentioned, however, 
that results of cyclization studies carried out on some stereochemically 
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variable polysiloxanes (see section  2.2) suggest that the characteristic 
ratio increases with increase in length or size of the side groups.

Cyclization studies have also been carried out on the chemical copoly-
mers poly(ethylene, dimethylsiloxane) and poly(styrene, dimethylsilox-
ane).36–38 Numerous intramolecular interactions need to be taken into 
account in a chemical copolymer. Consequently, the results on the copoly-
mers have been given only a preliminary interpretation in terms of rota-
tional isomeric state theory. Cyclization calculations have also been 
carried out for poly(dihydrogensiloxane) [–SiH2O–]x, but at present there 
are no experimental data available for comparison with theory.

Finally, melting point depression measurements have been conducted 
on several symmetrically substituted polysiloxanes, specifically the di-
methyl, diethyl, di-n-propyl, and diphenyl polymers. Interpretation of 
such experimental results yields entropies of fusion. Although it is diffi-
cult to extract a reliable configurational entropy from this quantity, such 
results could help elucidate the configurational characteristics of the 
chains thus investigated.17

5.2.2 Stereochemically Variable Polysiloxanes

In unsymmetrically disubstituted chains, the substituents of one type can 
be on the same side of the all-trans chain, on opposite sides, or on either 
side in a random arrangement, yielding isotactic, syndiotactic, and atactic 
forms. Poly(methylphenylsiloxane) was one of the chains chosen to illus-
trate this stereochemical variability. The relatively large Si–O bond length 
and Si–O–Si bond angle place apposed side groups at distances of separa-
tion (ca. 3.8 Å) at which there is a favorable energy of interaction. 

Si

O

O
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CH2

CH3
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Figure 5.1:
The poly(di-n-propylsiloxane) chain, showing the conformational variability of the propyl 
side chains.17 Reproduced by permission of the American Chemical Society.
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Conformational energy calculations17, 44 on this polymer indicate that the 
attractions should be particularly strong in the case of a pair of phenyl 
groups in adjacent repeat units. Therefore, the chains should have a ten-
dency to adopt conformations in which two phenyl groups are apposed on 
the same side of the chain.17 For the syndiotactic polymer this effect favors 
gauche states, which favor relatively high spatial extension, but suppress 
of such states for the isotactic polymer. As a result, the characteristic ratio 
is predicted to be very small for the isotactic polymer and to increase lin-
early with increases in the number of syndiotactic placements in the 
chain. These results are quite different from those calculated for mono-
substituted [–CHRCH2–]x vinyl or disubstituted [–CRR'CH2–]x vinylidene 
chains, including the structurally analogous poly(α-methylstyrene) 
[–C(CH3)(C6H5)–CH2–]x.

17

A characteristic ratio of 8.8 was reported for several samples of  
poly(methylphenylsiloxane),17, 45 at least some of which were known to be 
essentially atactic. This experimental result, however, can be reproduced 
from the model only by assuming a large fraction of syndiotactic place-
ments; the temperature coefficient predicted for this degree of syndiotac-
ticity is then also in good agreement with experiment. The assumption  
of significant syndiotacticity is in disagreement with NMR results and  
with the results of cyclization studies, both of which suggest that 
poly(methylphenylsiloxane) is essentially atactic. The cyclization results, 
however, yield a prediction for the characteristic ratio that is significantly 
larger than the experimental value of 8.8. The two tentative conclusions 
regarding the stereochemical structure might be brought into closer 
agreement by improving the calculation of the interaction energy of two 
apposed phenyl groups to take into account the fact that they would be 
less exposed to favorable interactions with the solvent in such conforma-
tions. This effect is apparently quite important in polystyrene [–CH(C6H5) 
–CH2–]x but may be less so in poly(methylphenylsiloxane) because of the 
larger distance of separation between side groups in the siloxane poly-
mers. Such revision could increase the number of isotactic placements 
without decreasing its predicted value of the characteristic ratio to below 
its known experimental value. In any case, resolution of this point really 
requires reliable experimental values of the characteristic ratio, deter-
mined on samples of known stereochemical structure.

Cyclization measurements have also been conducted on other stereo-
chemically variable polysiloxanes [–Si(CH3) R–O–]x, where R is H, CH2CH3, 
CH2CH2CH3, and CH2CH2CF3. The conclusion from these investigations 
was that such polymers are generally atactic and that an increase in the 
length or size of the side chains increases the characteristic ratio.37, 38, 42
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It would be interesting to find catalysts that parallel the Zeigler- 
Natta catalysts used to prepare isotactic poly(α-olefin) polymers.46 
Poly(methylphenylsiloxane) samples, for example, having sufficient iso-
tacticity (or syndiotacticity) to crystallize could be quite important. There 
is promising work based on ring-opening polymerization of cyclics of iso-
tactic stereochemistry using catalysts that prevent scrambling of the 
cyclic stereochemistry during polymerization. This route has yielded 
poly[(methyl(3,3,3-trifluoropropyl)siloxane] samples ranging from the 
usual noncrystallizable (atactic) form to materials that undergo strain-
induced crystallization to thermoplastics (which are crystalline at ambi-
ent temperatures).47–50

Control of stereochemistry, in general, is an interesting and potentially 
important subject with regard to commercial materials.51, 52

5.2.3 Some Unusual Side Groups

Including fluoro groups in the side chains of a polysiloxane can improve 
solvent resistance and modify surface properties,53–55 as discussed in 
chapter 6. Most interest has focused on replacing some hydrogen with 
fluorine in n-alkyl groups—for example, the three fluorines in the trifluo-
ropropyl group –(CH2)2CF3. One, two, or three fluorines have also been 
substituted into the phenyl groups of poly(methylphenylsiloxane).56, 57 
Also of interest is the use of aromatic side groups different from the phenyl 
groups present in the commercially important poly(methylphenylsiloxane) 
or the highly intractible poly(diphenylsiloxane).58–65 Homopolymers and 
copolymers having p-tolylsiloxane groups are of interest with regard to 
the formation of liquid-crystalline phases.66, 67

If the side groups are sufficiently hydrophilic, the polysiloxane can even 
become water soluble.68 Attaching groups such as those of ethylene oxide 
to polysiloxane networks can also be used to make them hydrophilic.69, 70

A final example is the use of optically active groups as side chains, the 
simplest example being the secondary butyl group –CH(CH3)(C2H5). Such 
polymers could be studied using any of the numerous characterization 
techniques developed to characterize optically active polymers such as the 
proteins.

Other side chains include unusually long n-alkyl groups,71, 72 cyclics (cy-
clolinear carbosiloxanes),73 fluorocarbons,74 phenylethenyl substituents,75 
Cr-bound carbazole chromophores,76 and pendant bicyclic fragments.77

In contrast to the foregoing examples, the polysiloxane sometimes ap-
pears as side chains (e.g., on poly(phenylacetylene) main chains).78
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5.2.4 Poly(dimethylsilmethylene)

Poly(dimethylsilmethylene), [–Si(CH3)2–CH2–]x, can be thought of either 
as a hydrocarbon analogue of PDMS (in which O atoms are replaced by 
CH2 groups) or as a silicon analogue to polyisobutylene [–C(CH3)2–CH2–]x 
(in which Si atoms replace one of the two skeletal C atoms in the repeat 
unit).17 Figure 5.2 shows the polymer schematically. The Si–C bonds are 
1.90 Å and, in contrast to siloxane chains, the two types of skeletal bond 
angles are essentially identical and tetrahedral. Since CH2 and CH3 groups 
have very similar interactions, this chain molecule should have some 
characteristics reminiscent of the idealized “freely rotating” chain.16, 20, 21 
This conclusion is supported by experimental evidence, which indicates 
that the characteristic ratio of the polymer is relatively small and that 
both its unperturbed dimension and dipole moment are essentially inde-
pendent of temperature.17

5.3 FLEXIBILITY OF THE POLYMER CHAINS

5.3.1 Equilibrium Flexibility

Equilibrium flexibility has a profound effect on the melting point, Tm, of a 
polymer. Since crystallites in turn have a profound effect on the proper-
ties, the crystallization PDMS has been a subject of considerable activ-
ity.23, 79–82 The melting points of small molecules in PDMS networks have 
also been reported.83

High flexibility in the equilibrium sense means high conformational 
randomness in the amorphous state, and thus high entropy of fusion and 
low melting point. This entropy can be reduced by stretching, in what is 
called “strain-induced crystallization.” Such strain-induced crystalliza-
tion has been studied extensively, both experimentally84–85 and theoreti-
cally.86–87 The crystallites thus generated can be very important since they 
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Figure 5.2:
The poly(dimethylsilmethylene) chain.17 Reproduced by permission of the American 
Chemical Society.
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may provide considerable reinforcement for a network. Most polysiloxane 
elastomers, however, have melting points that are too low to benefit from 
this effect.

Figure 5.3 shows examples of ways in which a polymer can be made 
more rigid.88 Possibilities include combining two chains in a ladder struc-
ture (figure 5.4), insertion of rigid units such as p-phenylene groups into 
the chain backbone and the addition of bulky side groups. Attempts have 
been made to prepare the silsesquioxane ladder polymer shown in the 
upper portion of figure 5.3 using trifunctional silanes.89, 90 The basic strat-
egy is to decrease the entropy of fusion and thus increase the melting 
point Tm (which is inversely proportional to the entropy of fusion). If the 
chains are combined into a ladder structure they cannot disorder as much 
as when they are separate, as shown in figure 5.5. The same argument 
holds for the other two methods for increasing Tm. This decreased equilib-
rium flexibility is generally paralleled by decreased dynamic flexibility, 
and thus by an increased glass transition temperature Tg. An advantage of 
the ladder structure is its resistance to degradative chain scission. The 
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Figure 5.3:
Some ways for making a polymer more rigid.29

Reproduced by permission of John Wiley and Sons.
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chain will not be degraded into two shorter ladder structures except in the 
unlikely event that two single-chain scissions occur directly across from 
one another.91

There is considerable interest in inserting a silphenylene group [–
Si(CH3)2C6H4–] into polysiloxane backbones.29, 92–98 In the case of the PDMS 
repeat unit, insertion yields the meta and para silphenylene polymers 
shown in figure 5.6.29 The Tg is increased to -48°C compared to -125°C for 
PDMS, but no crystallinity has been detected. Since the repeat unit is sym-
metric, it should be possible to induce crystallinity by stretching. The expla-
nation here is the same as that given in figure 5.5 except that the chains are 
prevented from completely disordering by the stretching force, rather than 

ΔS´< ΔS

ΔS > 0

Figure 5.5:
Sketch explaining the increase in melting point with increase in chain rigidity.29

Reproduced by permission of John Wiley and Sons.
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Figure 5.6:
Meta and para silphenylene polymers and their transition temperatures.29

Reproduced by permission of John Wiley and Sons.
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by the structural features of the chains. As expected, the p-silphenylene 
group has a larger stiffening effect, increasing the Tg to –18°C and giving 
rise to crystallinity with a Tm of 148°C. The resulting polymer is thus a ther-
moplastic siloxane. Apparently, ortho (o) silphenylene units have not been 
introduced in this way; they are probably much harder to incorporate be-
cause of steric problems. Even if they could be incorporated, such groups 
would not be expected to have much of a stiffening effect on the chain.

Silarylene polymers that contain more than one phenylene group in the 
repeat unit could be of considerable interest because of the various meta, 
para combinations that could presumably be synthesized. Cyclohexylene 
(C6H10) groups can switch between boat and chair forms and should thus 
be less stiff than phenylene groups. Both meta- and para-groups are of in-
terest in this regard. Table 5.1 summarizes some of these modifications 
and their likely effects. Figure 5.3 also has a sketch showing the use of 
bulky side groups to make a chain stiffer, such as by replacing one of the 

Table 5.1.  SOME POLYSILOX A NE STRUCTUR A L CH A NGES  

A ND EX PECTED CH A NGES IN PROPERTIES

Part of repeat unit Structural change
Expected changes  

in properties

Backbone Replacement of O by CH2 Decrease in polarity and  

  tendency to cyclize

Insertion of p-phenylene Large decrease in flexibility

Insertion of m-phenylene Smaller decrease in flexibility

Insertion of p-cyclo-hexylene Small decrease in flexibility

Insertion of m-cyclo-hexylene Small decrease in flexibility

Side group (CH2)mCH3, m > 0 Tendency to form liquid- 

  crystalline phases

Phenyl (atactic placements) Suppression of crystallinity,  

  and increase in radiation  

  resistance

Fluorinated groups Increase in solvent resistance

Bulky groups in general Decrease in flexibility

H atoms Capacity for cross linking by  

  vinyl groups

Vinyl groups Capacity for cross linking by  

  H atoms

Hydrophilic groups Increase in water solubility

Chiral groups, e.g.,  

–CH(CH3)C2H5

Generation of optical activity
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methyl groups in the PDMS repeat unit by a phenyl group. The resulting 
polymer, poly(methylphenylsiloxane), has a glass transition temperature 
of –28°C, which is significantly higher than the value, –125°C, shown by 
PDMS.99

There has been success in simulating the crystallinity of some polysi-
loxanes. This work was based on the model of Windle and coworkers100 for 
simulating chain ordering in copolymers composed of two comonomers, 
at least one of which is crystallizable. Monte Carlo techniques are first 
used to generate chains with sequences that are representative of those 
occurring in the polymers of interest. In the case of chemical copolymers 
the generation is based on standard copolymerization equations contain-
ing the usual reactivity ratios. In the case of stereochemical copolymers, 
generation is based on replication probabilities (meso rather than racemic 
placements). Typically, the generated chains are placed in parallel, two-
dimensional arrangements. Neighboring chains are then searched for se-
quence matches that could lead to the formation of crystallites.101

An example of modeling chemical copolymer crystallization is random 
versus semi-blocky poly(diphenylsiloxane-co-dimethylsiloxane) copoly-
mers. The chains were placed alongside one another in a two-dimensional 
array, with black squares representing dimethylsiloxane (DMS) units and 
white squares representing diphenylsiloxane (DPS) units.102 “Like” squares 
neighboring each other in the same row were then viewed as coalescing 
into blocks the lengths of which were compared with the known mini-
mum length required to form a crystallite. Crystallizable DPS regions 
were identified as distinct from noncrystallizable DMS component, or 
units of the crystallizable DPS component that were not long enough to 
crystallize.102 A value of the degree of crystallinity of a simulated sample 
was then determined by counting the units involved in the matching se-
quences relative to the total number of units of all the chains. The crystal-
lites thus identified presumably act as physical cross-linking sites and 
reinforcing domains, providing the additional toughness over random 
comonomer distribution.

An example of modeling of a stereochemically variable polysiloxane fo-
cused on poly[methyl(3,3,3-trifluoropropyl)siloxane],103 a polymer of in-
terest because of new synthetic techniques for controlling stereoregularity 
and thus crystallizability.47–50

It is intriguing that some flexible siloxane polymers form mesomorphic 
(liquid-crystalline) phases.104–132 Table 5.2 provides some illustrative data. 
Both poly(diethylsiloxane) and poly(di-n-propylsiloxane) show two crys-
talline modifications as well as a mesomorphic phase. The other major 
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class of semi-inorganic polymers, the polyphosphazenes, are also rela-
tively flexible, and show similarly interesting behavior.17, 133 Some polysi-
loxanes form liquid-crystalline phases because of the presence of relatively 
stiff side chains.134–141 This group has been studied with regard to the 
effect of deformation of the elastomeric polysiloxane phase on the meso-
morphic behavior exhibited by the side chains.

Although the polysiloxanes are much more flexible than their organic 
counterparts, the polysilanes seem to display intermediate properties. It 
is instructive to compare a polysilane with its hydrocarbon analogue in 
terms of chain flexibility. For example, relevant conformational energy 
calculations have been carried out on polysilane itself [–SiH2–]x.

142–143 
Energy maps143 for two consecutive results skeletal rotation angles φ sug-
gest that the lowest energy conformation should be a sequence of gauche 
states (φ = ± 120°) of the same sign.142, 143 This conclusion is in contrast to 
polyethylene [–CH2–]x, which has a preference for trans states. Such pref-
erences generally dictate the regular conformation chosen by a polymer 
chain when it crystallizes. Polyethylene crystallizes in the all-trans planar 
zig-zag conformation16, 20, 21 It would be interesting to determine whether 
polysilane crystallizes in the predicted helical form generated by placing 
all of its skeletal bonds in gauche states of the same sign. The calculations 
also predict that polysilane should have a higher equilibrium flexibility 
than polyethylene.143 Solution characterization techniques could be used 
to test this expectation. Dynamic flexibility, can also be estimated from 
such energy maps by determining the barriers between energy minima. 
Relevant experimental results could be obtained by a variety of dynamic 
techniques.144

Table 5. 2.  EX A MPLES OF LIQUID-CRYSTA LLINE  

POLYSILOX A NES a

Polymer Repeat Unit ~T, °C Transition

[–Si(CH3)2O–]  

(Reference polymer)

–40 Cryst →Isotropic

[–Si(C2H5)2O–] –60 Cryst →Cryst’

“ 0 Cryst’ → Mesomorphic

“ 40 Mesomorphic → Isotropic

[–Si(n-C3H7)O–] –55 Cryst →Cryst’

“ 60 Cryst’ →Mesomorphic

“ 205 Mesomorphic → Isotropic

a Reproduced by permission of the American Chemical Society.
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Also relevant here is the fact that PDMS in Langmuir films has been 
shown to undergo an interesting layering transition, which has been high-
lighted using poly(methyl methacrylayte).145

5.3.2 Dynamic Flexibility

Dynamic flexibility refers to a molecule’s ability to change spatial arrange-
ments by rotations around its skeletal bonds.35 The more flexible a chain is 
in this sense, the more it can be cooled before the chains lose their flexibil-
ity and mobility and the bulk material becomes glassy. Chains with high 
dynamic flexibility thus have low glass transition temperatures, Tg.

146 
Since exposing a polymer to a temperature below its Tg generally causes it 
to become brittle, low values of Tg can be advantageous, particularly in the 
case of fluids and elastomers. Structural changes that increase a chain’s 
equilibrium stiffness generally also increase its dynamic stiffness and 
thus increase Tg. Conversely, the very high flexibility of PDMS is the origin 
of its low Tm (−40°C)1, 99, 147 as well as its very low Tg (−125°C).1, 99, 147 The 
general effect of increased rigidity is thus to increase a polymer’s “soften-
ing temperature,” which is approximately Tm if the polymer is crystalline 
and approximately Tg (typically ~ 2/3 Tm in °K) if it is not.91

5.3.3 Viscoelasticity

Dynamic aspects of PDMS have long been of interest. Examples of such 
studies in the undiluted state include measurements of the onset of non-
Newtonian flow,148 effects of molecular weight149 and strand-length poly-
dispersity,150 effects of frequency,151 methyl group rotations by quasi- 
elastic neutron scattering,152 and the dynamics in grafted layers.153 There 
have also been studies of the onset of shear thinning,154 entanglement,155 
transiently trapped entanglements,156 and electromechanical response of 
PDMS actuators.157, 158

Solution studies have also been reported, for example, on un-cross-
linked PDMS in toluene.159, 160 Dynamic properties have even been carried 
out for the chains in emulsions,161 and in diblock lamellar mesophases.162

Cross-linked elastomers have been studied with regard to their moduli 
(particularly plateau values),163 effects of peroxide cross linking,164 adhe-
sive interactions with atomic force microscopy tips,165 and the effects of 
phenyl-group modifications.166 Investigations on networks containing fill-
ers include the effects of silica or polysilicate nanoparticles,167, 168 zero 
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mean-strain measurements,169 microcapsule dispersions,170 nanoclay-
modified PDMS copolymers,171 and the effects of strain history.172

5.4 PERMEABILITY

Siloxane polymers have much higher permeability to gases than most other 
elastomeric materials. For this reason, they have long been of interest for 
gas separation membranes, the goal being to vary the basic siloxane struc-
ture to improve selectivity without decreasing permeability. Polysiloxanes 
for pervaporation separations have also been of considerable interest.173–178 
The techniques employed in this area include NMR and fluorescence cor-
relation spectroscopy179 and inverse gas chromatography.180

The repeat units of some of the polymers which have been investi-
gated181–185 include [–Si(CH3) –RO–], [–Si(CH3) –XO–], [–Si(C6H5) –RO–], 
[–Si(CH3)2– (CH2)m–], [–Si(CH3)2– (CH2)m–Si(CH3)2–O–], and [–Si(CH3)2– 
(C6H4)m–Si(CH3)2–O–], where R is typically an n-alkyl group and X is an 
n-propyl group made polar by substitution of atoms such as Cl or N. Poly-
mers with oligo-organosiloxane side chains186 and co-networks of PDMS 
with poly(ethylene glycol)187 have also been studied for possible use as 
oxygen-permeable membranes. Unfortunately, structural changes that 
increase the gas-diffusion selectivity are generally found to decrease the 
permeability, and vice versa. Interest has not focused entirely on gases; for 
example, liquids such as polychlorinated biphenyls and polycyclic aro-
matic hydrocarbons have also been studied.188

In some cases, the polysiloxane was in the form of a composite—for 
example, with sulfonated cross-linked polystyrene particles,189 carbon 
black,190 acrylate latexes,191 or sodium dodecyl sulfate.192 Counterintui-
tively, the addition of impenetrable nanofillers can actually increase the 
permeability of a membrane.193 Also, siloxane-imide copolymers have 
shown some interesting properties in membrane separations,194 as have 
polysiloxanes containing poly(ether amine) groups.195

The interdiffusion of two samples of PDMS of different molecular 
weights has also been of interest.196

In addition to numerous experiments, there have been attempts at mod-
eling197 using solubility parameters198 and Flory-Huggins interaction pa-
rameters199 to predict separation characteristics and permeability of 
polysiloxane membranes.200–202 Simulations indicate that at least the asym-
metrically substituted polysilanes [–SiRR’–] have gas permeabilities compa-
rable to that of PDMS.203 The permeability, P, is the product of the solubility, 
S, of the gas in the polymer and its diffusivity, D.204 Values of P for the 
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polysilanes studied seem to be high because of very high gas solubility in the 
polysilanes. It is interesting to note that these simulations indicate a much 
lower permeability for poly(dimethylsilmethylene) [–Si(CH3)2–CH2–]. The 
presence of a trimethylsilyl group [–Si(CH3)3] as a side chain in an acetylene 
repeat unit increases the permeability of the polymer to a value above that 
of PDMS. The specific polymer is poly[1-(trimethylsilyl)-1-propyne]205–213; 
Table 5.3 gives some comparisons between it and PDMS.113 Remarkably, its 
permeability, P, is about an order of magnitude higher than that of PDMS 
without much decrease in selectivity (as measured by the ratio of the P 
values for oxygen and nitrogen). The greatly increased values of P are appar-
ently due to the unusually high solubility of gases in this polymer.206 Studies 
of the effects of substituting the trimethylsilyl group onto other polymer 
backbones are in progress. Membranes containing a liquid-crystalline 
PDMS have also been studied.214

Another type of membrane designed as an artificial skin coating for burns 
also exploits the high permeability of siloxane polymers.215, 216 The inner 
layer of the membrane consists primarily of protein and serves as a template 
for the regenerative growth of new tissue. The outer layer is a sheet of silicone 
polymer that not only provides mechanical support but also permits outward 
escape of excess moisture while preventing ingress of harmful bacteria.

Soft contact lens prepared from PDMS provide a final example, as 
shown in figure 5.7.113 The oxygen required by the eye for its metabolic 
processes must be obtained by inward diffusion from the air rather than 
through blood vessels.217, 218 PDMS is ideal for such lenses 215 because of its 
high oxygen permeability, but it is too hydrophobic to be adequately 
wetted by the fluids covering the eye. Poor wetting means the lens does 
not “feel right” and can also cause adhesion of the lens to the eye itself. 
One way to remedy this problem is to graft a thin layer of a hydrophilic 
polymer to the inner surface of the lens. Because of the thinness of the 
coating the high permeability of the PDMS is essentially unaffected.

Table 5.3.  SOME GA S PER ME A BILIT Y INFOR M ATIONa

Polymer Repeat Unit Gas 108Pb ( )P P/O N2 2

[–Si(CH3)2O–] O2 6.0 1.9

“ N2 3.1 —

[–C(Si(CH3)3) = C(CH3)–] O2 72. 1.7

“ N2 42 —

a Reproduced by permission of the American Chemical Society.
b Units of cm3(STP)cm/(cm2 s cm Hg).
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The contact lens application just cited illustrates the use of one of the 
most striking properties of PDMS, its superb transparency.219, 220 PDMS 
can retain this transparency even when filled (reinforced) with rather 
large amounts of silica. The transparencies219, 221 and indices of refrac-
tion222 of polysiloxane have been of considerable interest in general.

5.5 DIELECTRIC CONSTANTS AND DIPOLE MOMENTS

Some of the earliest relevant work in this area involved experimental 
studies of the dielectric relaxation times, polarizations, and dipole mo-
ments of the small molecules hexamethyldisiloxane, hexaethyldisiloxane, 
hexamethylcyclotrisiloxane, and octamethylcyclotetrasiloxane.223

Research on the corresponding polymers has focused almost exclu-
sively on PDMS, but there has been some work on poly(diethylsiloxane).224 
In the case of the PDMS, most studies have involved the linear chains,31, 
225–235 some the cyclics,233–235 and at least one cross-linked elastomer.236 
Improvements in dielectric properties continue to be important goals in 
the case of the polysiloxanes.237, 238

5.6 STABILITY, SAFETY ASPECTS, AND ENVIRONMENTAL IMPACTS

Siloxane polymers possess a number of properties that seem almost con-
tradictory. One example is the tremendous stability and durability shown 
by polysiloxanes in a wide variety of applications.239–241 One reason for 
this stability is the fact that the chain is already in a high oxidation state, 
and reduction takes place only at very high temperatures. Most scientists 

Eye

PDMS SOFT CONTACT LENS

Hydrophilic
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O2

Figure 5.7:
An example of the use of grafting to change only the surface properties of a polymeric 
material.303

Reproduced by permission of the American Chemical Society.
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are familiar with the now-commonplace constant-temperature bath con-
taining “silicone oil,” which operates at high temperatures for years with-
out any evidence for thermal degradation. Body implants made of 
polysiloxanes show little evidence of degradation, hydrolytic or otherwise, 
after decades of useful service, due to their resistance to hydrolysis and 
oxidation. The inertness of the siloxanes should not be much of a surprise, 
if one thinks of them as simple hydrocarbon modifications of the silicates 
we commonly refer to as “glass.” In spite of this robustness, polysiloxanes 
do not present severe environmental problems. For example, in the case of 
a spill, or rupture of an electrical device such as a transformer, the poly-
mers released degrade completely and relatively rapidly under normal en-
vironmental conditions.239–240

Examples of polysiloxane degradation studies include the role of surfac-
tants in suppressing aging of silica-PDMS gels,242 the effects of pigments 
on the stability of montmorillonite-PDMS composites,243 and the use of 
NMR and mass spectrometry to characterize degradation processes.244

Degradation can occur in water, in air, and particularly in the soil245 
when polymers come into contact with one or more reactive species, such 
as nitrate ion present in natural waterways. Nitrate is a source of atomic 
oxygen and, from it, hydroxyl radicals, which initiate the degradation pro-
cess. Another reagent is ozone, split by UV (ultraviolet) light into oxygen 
atoms, followed again by the production of hydroxyl radicals.

It is interesting to note that UV light itself has very little effect on the 
siloxane structure. Only the very shortest wavelengths present in sun-
light have any influence and, in this case, generate methyl radicals from 
the side groups. Polysiloxanes are generally resistant to all types of radia-
tion,246–250 particularly if they contain aromatic groups (e.g., the phenyl 
groups in poly(methylphenylsiloxane)).

Even when methyl radicals are replaced by silanol units, the surface of 
the material does not remain hydrophilic (water-wettable) very long. 
Either the silanol groups condense with other silanol units to restore the 
siloxane structure or unmodified chain segments migrate to the surface. 
In any case, a “self-repair” mechanisms underlies the “recoverability” of 
siloxane surfaces.

Clay minerals present in many soils have high interfacial areas with 
strongly acidic groups on their surfaces. These materials can react with 
siloxane chains and reorganize them into much smaller molecules. In fact, 
water readily reacts with the Si–O bond in the presence of catalytic 
amounts of either acids or bases. Some of these small molecules are vola-
tile enough to evaporate into the atmosphere. Others become capped with 
silanol (–SiOH) groups that frequently makes them water-soluble, and 
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thus environmentally degradable. At later stages in the process, even the 
hydrocarbon groups are affected. Although the organosiloxane structure 
is completely unknown in nature, the introduction of these small mole-
cules into the biosphere is thought to be entirely harmless. Furthermore, 
some of the degradation processes lead ultimately to silica, water, and 
carbon dioxide or inorganic carbonates.239, 240

The degradative reactions experienced by siloxane chains usually gen-
erate silanol groups, often at the chain ends, and can produce various cy-
clics.251 Pairs of such silanol groups can condense with one another, 
forming new siloxane linkages. This condensation reaction provides an 
interesting “healing” mechanism for the siloxane backbone.

Resistance to degradation or cross linking by radiation is also impor-
tant.252, 253 Resistance is one advantage that poly(methylphenylsiloxane) 
has over poly(dimethylsiloxane); the phenyl groups are efficient energy 
sinks that suppress the usual effects of radiation on a polymer.

There is interest in synthesizing polysiloxane in environmentally 
friendly supercritical carbon dioxide.254 Studies of the interactions be-
tween PDMS and supercritical carbon dioxide have been reported.255 This 
medium has also been used in the preparation of composites between 
PDMS and polystyrene256 and nanoclays.257 Supercritical fluids have been 
used to study various properties258 including surface behavior and carry-
ing out depth analyses in PE/PDMS composites.259

Recycling of polymers has become an important environmental issue. 
Not surprisingly given its relatively high cost, such studies are underway 
on silicone elastomers as part of a general effort addressed to various 
types of elastomeric materials, including ones that are heavily filled with 
silica.260–263

5.7 THERMODYNAMICS

Typical thermodynamic properties of the polysiloxanes, such as heat ca-
pacities, solubility parameters, thermodynamic interactions parameters, 
and so on, have been extensively tabulated.1, 99, 264 Of considerable interest 
have been their low-temperature properties, particularly stiffening ef-
fects.22 Static and dynamic light scattering measurements have even been 
carried out on PDMS in supercritical carbon dioxide.265 In some cases, dual 
techniques have been employed, for example, the joint use of differential 
scanning calorimetry266 and Raman spectroscopy.267 Equation-of-state 
parameters for PDMS itself have been reported,268–270 as have excess vol-
umes and chemical potentials for PDMS in several solvents.271



[ 100 ]  The Polysiloxanes

The strength of a siloxane bond has been estimated,272 using both den-
sity functional theory and single-molecule measurements.273 Ab initio 
methods have been applied to gain a better understanding of siloxane-
functionalized ionic liquids, with the specific focus being on ion pairs in 
1-methyl-3-pentamethyldisiloxymethylimidazolium chloride.274

Phase diagrams show miscibility and phase separation among various 
polysiloxanes, including cyclics.275–277 Related to phase separation is the 
segregation of siloxanes to surfaces in multiphase systems because of the 
low surface energies of these polymers.55, 278–280 As a result, a blend or 
block copolymer having only a few percent of siloxane can have surfaces 
consisting almost entirely of this minor constituent.

There is also much interest in applying various types of liquid-state 
theory, to PDMS in particular.10, 11

5.8 CRYSTALLINITY

The crystallization of PDMS in the undeformed state has long been of in-
terest, including unfilled elastomers23, 80, 82 and block copolymers rein-
forced with silica.81 Of greater interest, however, is PDMS, generally in the 
filled state, in elongation79, 84, 85, 281 where strain-induced crystallization 
provides considerable reinforcement of the elastomer. Strain-induced 
crystallization is of practical as well as fundamental importance.282, 283 
Theoretical models have been developed to characterize this type of crys-
tallization.86, 87

Similar experimental studies of strain-induced crystallization have been 
carried out on stereoregular poly(methyl-3,3,3-trifluoropropylsiloxane).47–50

5.9 SOME ADDITIONAL UNUSUAL PROPERTIES OF PDMS

Table 5.4 summarizes some of the unusual physical properties exhibited 
by PDMS.113, 240, 268, 271, 284 Atypically low values are exhibited for the char-
acteristic pressure206, 207 (a corrected internal pressure, which is used in 
the study of liquids), the bulk viscosity η, and the temperature coefficient 
of η.252 Also, entropies of dilution and excess volumes on mixing PDMS 
with solvents are much lower than can be accounted for by theory.268, 271 
Finally, as has already been mentioned, PDMS has a surprisingly high 
permeability.

Another striking feature of siloxane polymers is their unusual surface 
properties.54, 285–290 Fluorosiloxane polymers291 have been studied most  
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recently in this regard,53, 285, 292 but the properties to be described are char-
acteristic of a number of different members of the polysiloxane family. 
Surface properties can be exploited to serve in a variety of seemingly con-
tradictory roles. For example, siloxanes can be both antifoaming agents 
and foam stabilizers, both paper-release coatings and pressure-sensitive 
adhesives, both water repellents and dewatering agents, and both emulsi-
fiers and de-emulsifiers.285, 293 This paradox is explained by the differing 
ways in which the siloxane chains interact with the other species present. 
For example, in foam technology it is critically important whether the si-
loxane dissolves in the liquid phase or stays at the liquid-gas interface. 
Similar questions arise in other applications, and specific properties are 
generated by an appropriate choice of side group; the addition of special 
polar groups, ionic groups, or reactive functional groups; or copolymeriza-
tion with completely different classes of comonomer. Poly(methylphenyl
siloxane) can undergo a reversible droplet-monolayer transition294 that is 
relevant to the spreading of polymers on surfaces.

In the most general terms, the unusual surface properties of polysilox-
anes are due to their low surface energies,286, 293, 295 which are related to 
two important features of the chains themselves. The first is the very low 
intermolecular forces between the side chains, which are the methyl 
groups in PDMS, the commonest of the polymers having these unusual 
surface properties. The second is the remarkable flexibility of the siloxane 
backbone, which permits the chains to easily rearrange to place the methyl 
groups at the interface. A particularly interesting example of this is the 
ease with which a damaged polysiloxane surface quickly regenerates the 
surface characteristics of the original material. Some recent work has in-
cluded the antifouling properties of polysiloxane hydrogels.296, 297

Although the molecular origin of the unusual properties of siloxane 
polymers remains controversial, a number of suggestions have been put 
forward. One involves low intermolecular interactions, as mentioned in 

Table 5.4.  SOME UNUSUA L PROPERTIES OF PDMSa

Property Experimental Result

Characteristic pressure Unusually small

Bulk viscosity η Unusually small

Temperature coefficient of η Unusually small

Entropies of dilution Significantly lower than theory

Excess volumes on mixing Significantly lower than theory

Permeability Unusually large

a Reproduced by permission of the American Chemical Society.
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the preceding paragraph. Others focus on differences between the nonpo-
lar alkyl groups and the polar Si–O backbone,293 or the very high rota-
tional and oscillatory freedom of the methyl side groups in PDMS, the 
most important of the polysiloxanes.298 Still another focuses on the chain’s 
irregular cross section (very large at the substituted Si atom and very 
small at the unsubstituted O atoms.)271 Another possible explanation is 
the fact that chains with unequal skeletal bond angles would not pack 
easily299 since they would not be able to form the planar zig-zag conforma-
tions of polymers such as polyethylene.

Additional work in this area will almost certainly involve supramolecu-
lar structures.300, 301
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CHAP TER 6

Surfaces

6.1 INTRODUCTION

Because of the great importance of the surface properties of the polysilox-
anes, this topic is treated separately in this chapter.

6.2 INTERACTIONS WITH WATER

6.2.1 Hydrophilicity and Hydrophobicity

Hydrophobic polysiloxanes having simple aliphatic or aromatic side 
groups have surfaces that show essentially no attraction to water. In fact, 
polysiloxanes can serve as water repellants. This property is very useful 
for applications such as protective coatings on historical monuments1 and 
for controlling the surfaces of other polymers,2 sensors,3 and quantum 
dots.4 Hydrophobic surfaces can be readily regenerated if the surface be-
comes damaged. Regeneration occurs by rearrangements of the polysilox-
ane chains so that the hydrophobic methyl groups are once again covering 
the surface. The flexibility of the siloxane chain backbone facilitates this 
process.5 It is also possible to prepare hydrophobic films using methyl-
modified siloxane melting gels.6 Glass surfaces7 or wool fibers8 can be 
coated with polydimethylsiloxane (PDMS) to make them more 
hydrophobic.

In some cases, it is necessary to modify a polysiloxane surface to make 
it hydrophilic or hydrophobic. Hydrophobization is one aspect of the gen-
eral topic of modifying and managing the properties of polymer sur-
faces.9–12 An important example involves soft contact lenses that contain 
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PDMS, which is often used because of its very high permeability to oxygen, 
which is required for metabolic processes within the eye.13–15 Such lenses 
do not feel comfortable however because they do not float properly on the 
aqueous tears that coat the eye. There are a number of ways to modify the 
surfaces.16–18 There is even a way to make “unreactive” silicones react with 
inorganic surfaces.19

In some applications it is useful to have hydrophilicity in the bulk of 
the polymer instead of just at the surface. One way of doing this is by si-
multaneously end linking hydrophilic poly(ethylene glycol) (PEG) chains 
and hydrophobic PDMS chains.20 Another way is to make a PDMS network 
with a trifunctional organosilane R’Si(OR)3 end linker that contains a hy-
drophilic R’ side chain, such as a polyoxide.21 Treating only the surfaces is 
another possibility, for example, by adding hydrophilic brushes by vapor 
deposition/hydrolysis cycles.22 Such hydrophilic polysiloxanes can also 
serve as surfactants.23 It has also been possible to make radially layered 
copolymeric dendrimers with hydrophilic polyamidoamine interiors and 
hydrophobic organosilicon exteriors.24

These ideas are being extended to materials that have high repellencies 
to a variety of liquids, including oils, solvents, and other low surface-
energy liquids.25 Such “superomniphobic” surfaces have been generated  
on PDMS substrates.26

6.2.2 Superhydrophilicity and Superhydrophobicity

There are also techniques for preparing surfaces of greater hydrophilicity 
(“superhydrophilicity”)27, 28 or increased hydrophobicity (“superhydropho-
bicity”).29–43 More specific terminology calls low-contact-angle materials 
hygrophilic and high-contact-angle materials hygrophobic.32 Some of 
these materials display multiresponsive surfaces that can change revers-
ibly between hydrophilicity or superhydrophilicity and superhydropho-
bicity.27, 44, 45 Polymers showing transitions of this type are examples of 
stimuli-responsive materials, which are of increasing interest in a number 
of emerging applications.46

6.3 CHARACTERIZATION

6.3.1 Contact Angles

Measurement of advancing and receding contact angles of a water droplet 
on a polymer surfaces the standard way to characterize interactions  
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with water.20, 21, 47, 48 Both static and dynamic techniques have been 
used.47

The left portion of figure 6.1 shows a hydrophobic surface (with a 
large contact angle between the water droplet and the surface), and the 
right portion shows a hydrophilic one with a small contact angle. A 
major problem is contamination of the water droplet from the polymer 
surface, making reproducibility very difficult.47 Unusual increases in 
adhesion hysteresis and frictional forces have been observed when 
PDMS lenses were slid on smooth glassy surfaces after a period of 
aging.49

Applications in the biological area include stabilization of water in 
silicone oil emulsions by peptide-silicone hybrid polymers50 and the 
mitigation of reactive human cell adhesion on PDMS by immobilized 
trypsin.51

6.3.2 Wettability

A polymer should be readily wet with water for applications such as con-
tact lenses and for the preparation of hydrogels for a variety of biomedical 
applications. Increased wettability52–55 is reflected by reduced values of 
the contact angle of the polymer with water. Another application is sili-
cone surface modification of wool for self-cleaning.56

6.3.3 Spreading

In addition to the equilibrium properties there are important dynamic 
properties of surfaces. One example is the rate of spreading of PDMS on 

Figure 6.1:
Sketch showing the usual definition of the contact angle, for a very hydrophobic surface 
(high contact angle, left) and very hydrophilic (low contact angle right).



[ 122 ]  The Polysiloxanes

glass substrates.57 A related study involved nanoviscosity of PDMS as 
measured by an anthracene probe.58

6.3.4 Surface Pressure

The relationships between surface pressure and surface or interfacial area 
can be used to gauge hydrophilicity. This method has been used, for exam-
ple, to quantify the hydrophilicity of PDMS modified with ethylene oxide 
or propylene groups.59

6.3.5 Atomic Force Microscopy

Atomic force microscopy has been combined with nano-indentation mea-
surements to map hardness variations on the surface of a CaCO3-filled 
sample of PDMS.60 In another application, PDMS-modified tips were used 
to obtain friction coefficients involving self-assembled monolayers.61

6.3.6 Nuclear Magnetic Resonance

A relevant example in this area involves self-diffusion measurements in a 
microemulsion consisting of water, oil, and ethoxylated polymethylsilox-
ane surfactant.62

6.3.7 Swelling

Surface modification of PDMS has been used to retard swelling in organic 
solvents, which is particularly important for fabricating microfluidic de-
vices and for some types of lithography.63

6.3.8 Exposure to Seawater

PDMS has been widely used in antifouling coatings where it receives 
extensive exposures to seawater. The nature and extent to which the 
PDMS surface was modified can be determined in a variety of ways, 
including scanning electron microscopy and x-ray photoelectron 
spectroscopy.64
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6.4 CHAINS BONDED TO OR EMBEDDED IN SURFACES

6.4.1 Tethering

Tethered chains can be placed at the surface of another polymer to change 
its surface characteristics. The placement can be through covalent bond-
ing or by a physical process such as adsorption or embedding. It is also 
possible to tether quaternary ammonium salts to PDMS to enhance anti-
fouling and antimicrobial characteristics.65 The embedding approach is 
likely to be more robust.

One example is the silanization of the PDMS surface in the channels of 
a microfluidic devices such as biosensors.66 The goal was to make the sur-
face less hydrophobic and therefore less likely to absorb proteins. An or-
ganosilane was used to attach thiol groups on the surface, which were 
then reacted with modified DNA chains to give surface-immobilized 
chains of DNA oligomers. Oligomer reactions with target DNAs and an 
alkaline phosphatase conjugated with streptavidin then provides a plat-
form for assaying some biologically important substances. DNA has also 
been bonded to maleimide-activated PDMS surfaces.67

PDMS coatings in the channels of microfluidic devices have also been 
modified with a perfluorinated alkoxysilane for selectivity toward fluorine-
tagged peptides.68 A more general approach employs a vinyl-terminated 
initiator with some H atoms on a dimethyl-methylhydrogen polysiloxane 
copolymer.69 The polysiloxane surface activates to the extent that hydro-
philic chains can be bonded onto it. Another biologically interesting mate-
rial, heparin, has similarly been bonded to PDMS surfaces through a 
heterobifunctional poly(ethylene glycol) spacer to suppress the adsorption 
of molecules such as fibrinogen.70

In related work, acrylamide was grafted onto a PDMS surface using 
plasma polymerization. After this treatment, cell attachment to the 
PDMS surface became negligible.71

6.4.2 Grafting

One grafting approach involved peroxide-containing PDMS, using 
radical catalyzed thiol-ene chemistry to produce cross linkable poly-
mers.72 Another study focused on functionalization of surface-grafted 
poly(methylhydrosiloxane) thin films with alkyl side chains.73 In some 
cases, the alkyl chains were long enough to undergo crystallization. 
Crystallization was also involved in the study of polypropylene-graft-
polydiphenylsiloxane copolymers.74
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An example of attachment by adsorption involves making PDMS sur-
faces more hydrophilic by addition of hydrophobins (a family of small, 
cysteine-rich and amphipathic fungal proteins).75 A more complicated ad-
sorption approach is illustrated by the adsorption of segments of a graft 
copolymer onto a PDMS surface that had been treated with an oxygen or 
ammonia plasma.76, 77 The PDMS surface then contains hydroxyl-carboxyl 
groups that can attract the lysine segments of a poly(L-lysine-graft-
poly(ethylene glycol)), leaving hydrophilic ethylene glycol segments cover-
ing the PDMS surface. This adsorption technique can be extended to an 
embedding approach, as illustrated in figure 6.2. The PDMS sequences of a 
PDMS-poly(ethylene oxide) block copolymer embed into a PDMS elasto-
mer.78 The ethylene oxide segments are then relegated to the surface, 
giving the PDMS a hydrophilic coating.

In a gas phase approach, undecenyl-trichlorosilane vapor was con-
densed onto a silicon wafer surface to form a self-assembled monolayer 
film whose surface was composed of olefin groups.79 These groups react 
with SiH-functionalized PDMS in a hydrosilylation reaction to give an un-
usually thin coating of PDMS.

A hybrid approach involves adsorption followed by chemical bonding. 
Specifically, a vinyl-ended oligonucleotide was adsorbed onto a PDMS sur-
face and then a hydrosilylation reaction used to bond it to the surface 
chemically.80 This modification can greatly improve separation assays or 
the performance of biochips by enhancing target hybridization.

Whether bonded or physically adsorbed or embedded, surface poly-
mers dangle from the polymer surface, as do the chains in any PDMS 
elastomer. Such chains are important with regard to mechanical prop-
erties such as adhesion, adhesion hysteresis,81 and tack (“stickiness”).82 
Their rheological and dielectric behavior have been modeled using mo-
lecular dynamics.83

Figure 6.2:
Modifying a surface using a diblock copolymer in which one block (thin lines) is the same 
as the substrate polymer, and the other block (rejected to the surface) has the desired 
amount of hydrophilicity or hydrophobicity.
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6.5 RADIATION TREATMENTS

6.5.1 Plasmas and Photons

Modification of surfaces by radiation treatment can be difficult to control 
because of the high energies involved. The most extensively used treat-
ment of this type involves modifications by chemical transformation of 
surface groups or adsorbed molecules, or induced polymerization of suita-
ble monomers.

Transformation of PDMS can yield less hydrophobic surfaces, using 
radio-frequency plasmas,84 argon or hydrogen plasmas,85 oxygen plas-
mas,86, 87 helium plasmas,88 water plasmas,89 or other environments.90 The 
same treatments can be applied to molecules coated onto PDMS (e.g., im-
idazole and some of its derivatives) to facilitate attaching antimicrobial 
drugs onto the PDMS surface.91 Other examples are layer-by-layer modifi-
cations using acrylamides, sulfonates, and trimethylammonium chloride 
salts.92 A final example uses maleic anhydride to promote the formation of 
dicarboxylic acid groups on PDMS surfaces.93 Plasma polymerization has 
also been used to modify fillers and curatives used in a variety of 
elastomers.94

An example of plasma polymerization is acrylic acid coating of PDMS. 
The polymerized coatings yielded hydrophilic or patterned hydrophilic/
hydrophobic surfaces that were quite stable.95 These materials were useful 
in PDMS microchannels in lab-on-a-chip devices or in soft microlithogra-
phy. Maleic anhydride has also been used in these polymerizations.89 Pho-
tons have also been used to modify surfaces.96

6.5.2 UV and UV/Ozone Treatments

UV (ultraviolet) irradiation of PDMS surfaces has been described and 
compared to the results from water-plasma treatments and plasma po-
lymerization.89 These treatments affect cracking of thin coatings of PDMS 
during stretching.

The use of UV in the presence of ozone is illustrated by the conversion 
of portions of PDMS surfaces to more hydrophilic SiOx.

97, 98 UV/ozone 
treatments were also used to make poly(vinylmethylsiloxane) surfaces 
more hydrophilic, but only about one-twentieth the PDMS exposure time 
was required.99 Such treatments have also improved the permeability of 
PDMS membranes.100
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6.5.3 Ion Beams

Poly(hydroxymethylsiloxane) surfaces have been modified with 6 keV Ar+ 
beams, and the results compared with those from oxygen plasma treat-
ment.101 The ion beam approach was much more successful in promoting 
proliferation of human dermal fibroblasts. This result was attributed to a 
peculiar electronic structure and related electrical properties in the ion-
containing PDMS. Low-energy ion beams have also been used to form 
silica on PDMS surfaces.102

6.6 SOME ADDITIONAL CHEMICAL ASPECTS

6.6.1 Emulsions

PDMS oil/water emulsions have been stabilized by adsorbing hybrid silox-
ane polymers at the droplet surface.103 Examples of such additives are 
PDMS backbones with side chains consisting of trimethylene spacers 
ending with amino groups, methylated amino groups, acid groups, or an 
ethylene oxide decamer. Microemulsions have also been prepared directly 
from silicone oil with an anionic/nonionic surfactant mixture.104

6.6.2 Radical Polymerization

Radical polymerization was used on acrylamide adsorbed onto a PDMS 
surface.105 The hydrophilic surface thus generated had a twenty-fold im-
provement in resisting irreversible adsorption of lysozyme and was stable 
against reorganization to a hydrophobic surface for at least a month.

6.6.3 Copolymers with Polyurethanes

Segmented polyurethanes with PDMS blocks were found to have good en-
vironmental responsiveness.106 The hydrophobic-to-hydrophilic transfor-
mation can be managed by varying the composition of the segments of the 
polymer. The associated switchable properties could be of interest in a 
number of applications including the release of soils, combating fouling, 
and selective adsorption–desorption of proteins. Surface microtopogra-
phy studies of a thermoset siloxane-urethane system have been re-
ported.107, 108
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6.7 MIGRATION

6.7.1 Surface Segregation

Because of its low surface free energy, PDMS tends to migrate to sur-
faces and interfaces. For example, in blends of PDMS with low-density 
polyethylene109 or linear low-density polyethylene,109, 110 the surfaces 
are enriched with the hydrophobic methyl groups from the PDMS 
chains. The same is true for blends of PDMS with polypropylene109 and 
poly(3-hexylthiophene).111

Similar enrichment of siloxane units occurs at the surfaces of block copo-
lymers or even random copolymers containing PDMS sequences. Examples 
are poly(dimethylsiloxane-b-ethylene oxide)112 and poly(dimethylsiloxane- 
b-imide) multi-block copolymers,113 poly(dimethylsiloxane)/imine copoly-
mers,114 and poly(urethane-dimethylsiloxane) anionomers.115 Other mate-
rials, such as long-chain alkenes116 and highly branched polymer additives117 
exhibit surface segregation. Much of the information on these changes  
in surface composition has been obtained by measurements of contact 
angles.

6.7.2 Recovery and Restructuring

In some cases attempts to make PDMS surfaces more hydrophilic were 
only temporarily successful. Recovery or restructuring can occur, with 
methyl groups from the siloxane units migrating to the surface to lower 
the free energy of the system. Restructuring is facilitated by the high flex-
ibility of the polysiloxane backbone.

Studies of this restructuring process have been carried out on PDMS 
with surfaces made hydrophilic by UV/ozone treatment,118 oxygen 
plasma,10 or corona discharge.119 In these cases, changes in surface compo-
sition were determined using chemical force microscopy,120 Fourier trans-
form infrared spectroscopy and x-ray photoelectron spectroscopy,10 or 
atomic force microscopy.119

Similar results have been obtained on PDMS elastomers. Examples are 
tetraethoxysilane-cured hydroxyl-terminated PDMS, methylhydrogensi-
loxane-cured vinyl-terminated PDMS, and methylhydrogensiloxane-cured 
vinyl-terminated poly(dimethylsiloxane-co-diphenylsiloxane) chemical 
copolymer.121 Restructuring has also been observed in un-cross-linked co-
polymers, for example PDMS-co-polystyrene,121 using sum frequency gen-
eration vibrational spectroscopy.
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6.7.3 Self-Healing

For some applications, it is necessary to maintain a hydrophobic surface. 
If the surface is damaged then the recovery or restructuring is beneficial 
and is called self-healing. In this sense, PDMS is a “smart material,” in 
that it responds constructively to a change in the environment.

Self-healing is often used in a broader sense, to mean reconstruction of 
the entire polymer instead of just its surface.122 A relevant example here is 
a PDMS elastomer that contains microencapsulated PDMS resin and mi-
croencapsulated cross linker.123 If this type of PDMS is damaged, both cap-
sules rupture and the newly formed elastomer mends the damaged area.

6.8 INTERACTIONS WITH BIOMOLECULES

6.8.1 Trapped Biomolecules

Biologically active molecules are sometimes trapped in PDMS when end-
functionalized PDMS chains are linked into a network structure. This 
method has been done, for example, with a lipase enzyme.124 The PDMS 
plays a beneficial role as an activator or protective agent. Similar results 
were found for the enzyme α-chymotripsin, with some short-chain 
poly(ethylene oxide) used to enhance enzymatic activity.125 It is also pos-
sible to generate microtopographic patterns that affect Escherichia coli bio-
film formation on PDMS surfaces.

6.8.2 Controlled Release

Surface graft polymerization of poly(ethylene glycol) acrylate was used to 
modify the surface of PDMS.126 Templates with channels were formed 
from this material and sol-gel chemistry was used to form amino-silane 
doped xerogel microarrays. These structures were then used to release 
nitric oxide at various rates, by control of micropattern dimensions, type 
and concentration of the amino-silane, and so on. This method parallels 
the use of polymers in controlled drug-delivery systems.127–129

6.8.3 Protein Adsorption

Proteins react with silicon-containing materials in a variety of ways.130 
For example, peptides in a phage library were exposed to the surface of 
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several types of silsesquioxane cages.131 The peptide units that bonded 
most readily were proline, histidine, and threonine. Another example of 
favorable interactions involves polysiloxanes in both the liquid and elasto-
meric forms in the presence of nonionic surfactants. These environments 
increase the activity of a number of enzymes, including α-chymotrypsin 
and a lipase. Studies have also been carried out on carbohydrate-modified 
siloxane surfactants.132

In many applications it is important to have surfaces that repel proteins. 
Hydrophilic poly(ethylene oxide) segments are effective in this regard. 
Such segments make polyoxide surfaces protein-repellant when either in-
corporated in the bulk material133 or covalently bonded to its surface.134, 135

6.8.4 Cells and Antigen Molecules

The attachment and growth of several types of mammalian cells on fibro-
nectin-coated PDMS have been reported.136 All cells grew at the same rate 
on the PDMS irrespective of its degree of cross linking, but the compati-
bility of the cells on the surfaces did depend on the cell type. Similar re-
sults were obtained when micropatterns of hydrophilic regions were 
placed on PDMS by means of a gas plasma.137 These modifications of the 
PDMS surfaces were found to increase the adhesion of fibroblast cells. On 
the other hand, grafting sulfobetaine onto PDMS surfaces decreases the 
adsorption of blood platelets.138

Geometric aspects can also be important, as illustrated by control of 
the spreading of mammalian cells on wavy PDMS surfaces.139 Wavy sur-
faces were generated by stretching a sheet of the elastomer, exposing it to 
a oxygen plasma, and the allowing it to relax.

Another study focused on PDMS surfaces made hydrophilic by modifi-
cation with hydrophobins (small, cysteine-rich and amphiphilic fungal 
proteins).75 This approach was used to pattern antigen molecules, followed 
by immunoassays. For example, chicken immunoglobulin G was found to 
be compatible with the hydrophhobin-modified PDMS.

Some related work involved cellular interactions of collagen-immobi-
lized PDMS surfaces,140 and the immobilization of antibody fragments on 
polymer brushes supported by silicone nanofilaments.141

6.8.5 Biofouling

PDMS surfaces modified with poly(ethylene glycol) have a near-perfect  
resistance to nonspecific protein adsorption, making them effective for 
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suppressing biofouling.76, 142 The incorporation of diphenylsiloxane oils in 
PDMS is also effective. Methods have been developed to minimize deple-
tion of these oils when the surfaces are exposed to freshwater and other 
marine environments.143

Coatings of the block copolymers, PDMS-polyurethane and PDMS-
acrylic-polyurethane,144 and PDMS-polyurea,145 are also effective antibio-
fouling agents as are tethered quarternary ammonium salts in a 
cross-linked PDMS matrix.65

6.9 MECHANICAL ASPECTS

6.9.1 Friction and Lubricity

Frictional effects of PDMS sliding on gold surfaces,146 glass,147 silicon oxide 
surfaces,148 or glassy polymers,149, 150 have been investigated in detail. 
There has also been some interest in self-lubricating biomaterials.151, 152

6.9.2 Adhesion

Adhesion between polymers and various surfaces has long been of general 
interest.153, 154 PDMS samples of varying degrees of cross linking were 
studied to determine the extent to which they adhered to one another 
(self-adhesion).155 This type of adhesion was further explored by prepar-
ing PDMS model networks having known numbers of dangling chains.81 
The adhesion hysteresis increased with increase in the number of dangling 
chains because of the increase in the number of such chains bridging the 
interface.

Similar studies have been carried out on the adhesion of PDMS to poly-
carbonate using thermal gradients and x-ray photoelectron spectros-
copy,156 to mica using atomic force microscopy,157 and to glass158, 159 or to 
silicon160 using measurements of force, contact angle, or other properties. 
There has also been considerable interest in the adhesion strength be-
tween coated particles and polymer matrixes.161 Surface functionalization 
has been used to improve adhesion.162, 163

Modeling has been used to clarify the dependence of adhesive failure in 
PDMS on its viscosity, the adhesive thickness, the substrate properties, 
some rheological aspects, and peeling velocities.164

Interfacial tension between PDMS and another polymer such as liquid 
polybutadiene has also been studied.165 The surface behavior of PDMS-
filled nanoporous anodic alumina has been reported.166
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6.9.3 Tribology

The low coefficients of friction shown by the polysiloxanes have been 
exploited in reducing abrasion or wear on a variety of materials. For 
example, PDMS thin coatings on mica were studied in this regard.167 
PDMS block copolymers have been blended with polypropylene and 
high-density polyethylene for this purpose.168 Closely related is the 
scratch resistance of elastomeric PDMS coatings on materials such as 
stainless steel.169

6.10 SOME NOVEL MATERIALS

6.10.1 Dendrimers

Dendrimers,170–173 including those based on organosilicon materials,174 are 
of great relevance in siloxane surface science, particularly since their sur-
faces have functionalities that are numerous and controllable.

6.10.2 Ceramic Phases and Coatings

Work in this area involves applying polysiloxane coatings on inorganic 
substrates as has been done on silica,175, 176 Al2O3/GaAs,177 and the chan-
nels in microfluidic devices.178 Variations include sol-gel blends of PDMS 
and titania179 and titania coatings on PDMS.180 PDMS cores have also been 
coated with poly(N-isopropylacrylamide) shells to give thermoresponsive 
microspheres.181

6.10.3 Micropatterning

Patterns with dimensions at the micron level have been placed on  
PDMS182, 183, 184 and PDMS-acrylic interfaces.185 Such materials have nu-
merous applications, including soft lithography.

6.10.4 Nanof ilaments and Molecular Wires

Polysiloxane nanofilaments can be superhydrophobic.186 Such filaments 
can be subsequently patterned to present a “superfunctional” surface.187 
Activation is achieved by an oxygen plasma followed by reaction with  
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a functionalized silane in the gas phase or in a solvent. One application is 
the selective enrichment of proteins.188

It is also possible to fabricate elastomeric wires by selective electroless 
metallization of PDMS.189
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CHAP TER 7

Elastomeric Networks

7.1 NETWORK FORMATION AND SOME ELASTOMERIC QUANTITIES

7.1.1 Gelation

Gelation is the cross-linking process that leads to the network structures 
required for rubberlike elasticity.1–5 In some cases, gelation can be revers-
ible.6–8 There have been numerous studies involving theory and simula-
tions exploring gelation and the mechanical properties of the resulting 
networks.9–20

Cross linking with free radicals is still quite common.21–27 Radiation has 
often been used to carry out the cross linking,28–36 as have new techniques 
known as “click” chemistry.8, 37–40 Hydrosilylation is also popular.41–51 Net-
works have even been designed with movable cross links.52 Finally, reac-
tive groups can be placed at the chain ends or within the chains 
themselves.53–59

Related studies have involved polydimethylsiloxane (PDMS)-based 
organogelators,60 web-to-pillar transitions of gels,61 and silica aero-
gels.62 There has also been interest in polysiloxanes in interpenetrat-
ing hydrogels with high oxygen permeabilities63 and viscoelastic 
magnetic gels.64 Organic-inorganic hybrids with relatively low melting 
temperatures also exist,65 some of which can be made to be 
self-healing.66–68

Gels are also formed in swelling experiments,69, 70 which are useful for 
equilibrium experiments to characterize network structures.71

One of the recent topics in this area involves stimuli-responsive gels,72–75 
under the descriptive title of “self-walking gels,”76 “wormlike motion of 
gels,”77 and “peristaltic motion of gels.”78
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7.1.2 Cross Linking Under Unusual Conditions

The earliest studies of networks formed in solution were undertaken to 
investigate some subtle aspects of the elastic free energy expression—
whether or not an additional term in the logarithm of the volume was 
required.79–86

Other studies focused on the properties of networks in general. As can 
be gathered from chapter 4, it is difficult to obtain information on the to-
pology of a network. Some studies have therefore taken an indirect ap-
proach. Networks were prepared in a way as to simplify their topologies, 
and their properties were measured and interpreted in terms of reduced 
degrees of network-chain entanglement. 71, 82, 87–94

The two techniques employed involved separating the chains prior to 
cross linking by either dissolution84 or stretching.95 After cross linking, 
the solvent is removed or the stretching force is relaxed, and the network 
is studied (unswollen) with regard to its stress-strain properties, typically 
in elongation.85, 86

Figure 7.1 schematically shows the preparation of networks by cross 
linking in solution followed by removal of the solvent.96 Success in obtain-
ing elastomers with fewer entanglements is supported by the observation 
that such networks come to elastic equilibrium much more rapidly than 
elastomers cross linked in the dry state. Table 7.1 shows results on PDMS 
networks cross linked in solution by means of γ radiation.84, 97 Note the 
continual decrease in the time required to reach elastic equilibrium, teq, and 
in the extent of stress relaxation as measured by the ratio of equilibrium  
to initial values of the reduced stress, [f*], upon decrease in the volume  

XL

Solvent removal Dry network with fewer
entanglements

Figure 7.1:
Cross linking in solution to prepare networks of simpler topology. XL is the cross-linking 
step done in solution.
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fraction of polymer present during the cross linking. ([f*] is defined in sec-
tion 7.1.3). Figure 7.2 qualitatively explains these observations. When a 
network is cross linked in solution and the solvent then removed, the 
chains collapse in such a way that there is reduced overlap in their configu-
rational domains, which reduces chain-junction entangling embodied in 
the various constraint theories.

Solution cross-linked elastomers also exhibit stress-strain isotherms 
in elongation that are closer in form to those expected from the simplest 
molecular theories of rubberlike elasticity.87 Specifically, there are large 
decreases in the Mooney-Rivlin 2C2 correction constant described in 

Table 7.1.  PDMS NET WOR K S COMPA R ED AT A PPROX IM ATELY CONSTA NT 

MODULUS

v2S
a teq (hr) [f*](equil)/ [f*](init) 2C2 (N mm–2)

1.00 0.70 0.95 0.062

0.75 0.48 0.98 0.057

0.62 0.10 0.99 0.059

0.55 0.30 0.99 0.062

0.48 0.02 1.00 0.067

0.40 0.03 1.00 0.039

0.30 0.00 1.00 0.031

aVolume fraction of polymer in the solution being irradiated during the cross-linking reaction, which is 
generally somewhat larger than the volume fraction, v2c, actually incorporated in the gel.
Reprinted with permission from J. E. Mark et al., Physical Properties of Polymers. Copyright 1984 Amer-
ican Chemical Society.84, 97

Figure 7.2:
Typical configurations of four chains emanating from a tetrafunctional cross link in a 
polymer network. In the left sketch, the network was prepared in the undiluted state, and 
in the right sketch, it was prepared in solution and then dried. When a network is cross 
linked in solution and the solvent then removed, the chains collapse in such a way that 
there is reduced overlap in their configurational domains.
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figure 7.18. There have also been studies of the segmental orientation90 
and viscoelastic properties88 of these networks.

In terms of the constrained-junction theory,71, 96 the constraint param-
eter κ is reduced for solution cross-linked elastomers, indicating decreased 
chain-crosslink entangling. Specifically, the theory gives a good account 
of these results when κ was decreased though a reduction in the volume 
fraction v2c of polymer present during the cross linking.89, 91–93 The values 
of κ obtained are within the range obtained in other comparisons of theory 
and experiment, as are the values of an additional, relatively unimportant 
heterogeneity parameter ζ.98 The values of κ generally decrease with de-
crease in the volume fraction v2c, and with increase in degree of cross link-
ing as represented by the Mooney-Rivlin constant 2C1. The dependence of 
κ on v2c is significantly stronger than that suggested by theory however, 
indicating a particularly strong effect of dilution on the degree of network 
chain interpenetration. Simulations have been carried out to further clar-
ify the structure-property relationships of these elastomers.99

Removal of the solvent has the additional effect of putting the chains 
into a “supercontracted” state (figure 7.3).96 Experiments on strain-in-
duced crystallization carried out on such solution cross-linked elastomers 
indicate that the decreased entangling is less important than the super-
contraction of the chains. Crystallization required larger values of elonga-
tion compared to elastomers cross linked in the dry state.100, 101 The most 
recent work in this area has focused on the unusually high extensibilities 
of such elastomers.99, 102–107

Unusual properties are also obtained for networks prepared and stud-
ied in the opposite way, specifically cross linking in the dry state and then 
swelling the network prior to the measurements of mechanical proper-
ties.71 The approach to elastic equilibrium is more rapid and the stress-
strain isotherms in elongation are closer to the form predicted by the 

Solvent
removal

Figure 7.3:
“Supercompression” of the network chains when a network formed in solution is dried.
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simplest molecular theories of rubberlike elasticity. Such networks do not 
have the unusually high extensibilities of networks formed in solution 
and studied in the dry state.

Networks can also be formed from chains in the deformed state.71 In 
this approach a first network is generally introduced in the undeformed 
state, the resulting elastomer is elongated, and a second network is intro-
duced in the stretched state. Release of the stress permits the network to 
retract, but the second network of this “double-network” structure pre-
vents retraction down to the original dimensions (figure 7.4). The most 
interesting feature of the retracted network is the fact that it is aniso-
tropic in structure and properties.

In some cases, double networks have shown increases in orientability 
and strain-induced crystallization,108 as well as improved fatigue resis-
tance.109, 110 In fact, some results show that there may be less of a compro-
mise between failure properties in general and the modulus,111, 112 which 
may be due in part to the decreased hysteresis observed for some of these 
elastomers.113 There have even been reports of improved thermal stabil-
ity,114 although it is hard to visualize how this would occur. Finally, electri-
cal resistivity is more sensitive to strain in carbon-black reinforced double 
networks.115 Better molecular understanding of these observations is 
being sought with, for example, extensive studies of residual strains and 
birefringence.116

Results on double networks in the unswollen state generally track the 
behavior of single networks. Recent results, however, now indicate that 
swelling double networks gives gels that have extremely high mechanical 
strength117–119 and fracture energy.120

Stretch 

Add more
XLs  

Retract 

Figure 7.4:
Cross linking in the elongated state to prepare networks of simpler topology.
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7.1.3 Some Elastomeric Quantities

The majority of studies of mechanical properties of elastomers have been 
carried out in elongation because of the simplicity of this type of deforma-
tion.71, 121–123 Results are typically expressed in terms of the nominal or 
engineering stress f* = f/A*, which, in the simplest molecular theories, is 
given by
	                                 α α= − −f vkT* ( )2 	 (1)

where ν is the number density of network chains, k is the Boltzmann 
constant, T is the absolute temperature, and α is the elongation or  
relative length of the stretched elastomer. The modulus or reduced  
stress is
	                                α α≡ − =−f f vkT[ *] * /( )2 	 (2)

[f*] is often fitted to the Mooney-Rivlin semi-empirical formula [f*] ≡ 2C1 
+ 2C2α

-1, where C1 and C2 are constants independent of deformation α.123, 
124 The simplest model assumes affine deformations, in which the cross 
links move in parallel with the macroscopic dimensions. This approach 
has been revisited recently.125 There are a fewer studies using other types 
of deformation such as biaxial extension or compression, shear, and 
torsion.

Swelling is a nonmechanical property that is frequently used to char-
acterize elastomeric materials.71, 124, 126, 127 Swelling is an unusual defor-
mation in that volume changes are of central importance, rather than 
being negligible. Swelling is a three-dimensional dilation in which the 
network absorbs solvent, reaching an equilibrium degree of swelling at 
which the free energy decrease due to the mixing of the solvent with the 
network chains is balanced by the free energy increase accompanying 
the stretching of the chains. The network is typically placed into an 
excess of solvent, which it imbibes until the dilational stretching of the 
chains prevents further absorption. The degree of cross linking can be 
determined from equilibrium extent of swelling, provided the polymer-
solvent interaction parameter χ is known.126 Conversely, if the degree of 
cross linking is known from an independent experiment, then the in-
teraction parameter can be determined. The equilibrium degree of 
swelling and its dependence on various parameters are important tests 
of theory.71, 96

A number of specialized elastomeric quantities have also been investi-
gated. PDMS networks have been particularly useful in investigating the 
“Mullins Effect,” in which filler-reinforced elastomers exhibit a reduction 
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in stress after the initial extension.128–130 The same may be said for the 
“Payne Effect,” in which increase in the shear strain of a filled elastomer 
causes a drop in the elastic modulus.113, 131, 132 The tensile properties of 
PDMS133 and the origins of the failure of silica-filled PDMS elastomers 
have also been elucidated from first principles, specifically using Car- 
Parrinello molecular dynamics.134 In an unusual example of biomimicry, 
PDMS was molded into arrays of microlens shells that snapped from one 
curvature (concave) to another curvature (convex) in a way that is remi-
niscent of the trapping mechanism of the Venus flytrap plant.135 In some 
cases, PDMS thin films showed extreme hardening due to high compres-
sive strain and confined thickness.136

An example of a property that is less understood in molecular terms is 
the scratch resistance exhibited by polysiloxane elastomers.137

7.2 UNIMODAL MODEL ELASTOMERS

7.2.1 General Approach

Until recently, there was little reliable, quantitative information on the 
relationship of stress to structure, primarily because of the uncontrolled 
manner in which elastomeric networks were generally prepared.3, 96, 124,  
126, 138 Segments close together in space were linked irrespective of their 
locations along the chain trajectories, resulting in a random network 
structure in which the number and locations of the cross links were un-
known. New synthetic techniques are now available, however, for the 
preparation of “model” polymer networks of known structure. If networks 
are formed by end linking functionally terminated chains then the re-
quired structural information is determined by the cross-linking reac-
tion.96, 139, 140 The functionality of the cross links is the same as that of the 
end-linking agent, and the molecular weight distribution between cross 
links matches that of the chains prior to end linking.

An example is the reaction shown in figure 7.5, in which hydroxyl-ter-
minated chains of a polymer such as poly(dimethylsiloxane) (PDMS) are 
end-linked using tetraethyl orthosilicate (alternatively called tetraeth-
oxysilane, TEOS). Networks have also been formed from PDMS chains 
that have either amide or urea groups at both ends.141, 142 In these studies, 
hydrogen-bonded polymerizable end groups have been of particular inter-
est. It is also possible to make networks from PDMS chains having a 
known number of potential cross-linking sites placed as side chains along 
the polymer backbone, as long as their distribution is known as well.143
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Because of their known structures, such model elastomers are now the 
preferred materials for the quantitative characterization of rubberlike 
elasticity. The properties of PDMS networks have been of interest to a va-
riety of groups.144–147 Such specific cross-linking reactions are also useful 
in the preparation of some of the liquid-crystalline elastomers,148, 149 dis-
cussed in chapter 3.

7.2.2 Ef fects of Junction Functionality

Trifunctional and tetrafunctional PDMS networks can be prepared using the 
end-linking approach. Such networks have been used to test the molecular 
theories of rubber elasticity with regard to the increase in nonaffineness of 
the network deformation with increasing elongation. Figure 7.6 shows typical 
results.150 The ratio 2C2/2C1 decreases with increased cross-link functionality 
because cross links connecting four chains are more constrained than those 
connecting three.151 Junction fluctuations, which lead to nonaffine behavior 
at large strain, are reduced for four-functional networks. The decrease in 
2C2/2C1 with decreasing network chain molecular weight is due to the fact 
that there is less configurational interpenetration for short network chains, 
which means that cross links are more easily displaced under deformation. As 
a result the deformation is nonaffine even at relatively small deformations.

A more thorough investigation of the effects of cross-link functionality 
requires more versatile chemical reactions, as illustrated in figure 7.7. Spe-
cifically, vinyl-terminated PDMS chains are end linked using a multifunc-
tional silane. In the study summarized in figure 7.8,152 this reaction was 
used to prepare PDMS model networks having functionalities ranging from 
three to eleven, with an unsuccessful attempt to achieve a functionality of 
thirty-seven. As shown in the figure, values of 2C2 relative to 2C1 both de-
crease, for the reasons described in the discussion of figure 7.6.

+ (C2H5O)4SiOH4  HO + 4 C2H5OH 

O O

OOHO
OH

HO
OH

Si

Figure 7.5:
End linking by a condensation reaction between hydroxyl groups at the ends of a polymer 
chain and the alkoxy groups on a tetrafunctional end-linking agent. The number-average 
molecular weight Mn of the precursor chains becomes the critically important molecular 
weight Mc between cross links. The distribution of Mn also characterizes the distribution 
of Mc (i.e., network chain lengths).
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7.2.3 Ef fects of Entanglements

Model networks may also be used to test of molecular predictions for the 
modulus of a network of known degree of cross linking. Some experiments 
on model networks 10, 96, 153, 154 have given values of the elastic modulus in 
good agreement with theory. Others 155–160 have given values significantly 
larger than predicted.96 The increase in modulus has been attributed to 
contributions from “permanent” chain entanglements of the type shown 
in figure 7.9. The issue, however, has not been completely resolved.

Aspects of greatest importance appear to be (i) investigating the effects of 
cross linking in solution, (ii) studying the effects of swelling on networks 
cross linked in the bulk (dry) state, (iii) building on the demonstration by 

2C
2/

2C
1

Mc
0

φ = 3

φ = 4

Figure 7.6:
Dependence of Mooney-Rivlin ratio, 2C2/2C1, on the molecular weight between cross 
links. The factor 2C2 measures the departure from affineness as the elongation increases, 
and 2C1 approximates the high-deformation modulus. The ratio decreases with decrease 
in network chain molecular weight, and with increase in junction functionality, as pre-
dicted by theory.98

6 +

H H H

H HH

Figure 7.7:
End linking by an addition reaction between vinyl groups at the ends of a polymer chain 
and the active hydrogen atoms on silicon atoms in an oligomeric poly(methyl hydrogen 
siloxane). The case shown gives a junction functionality, φ, of six.
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Vilgis and Erman161 that the constraint models and slip-link models have 
much in common, (iv) elucidating the effects of cross-link functionality and 
degree of cross linking, (v) exploring a variety of elastomeric polymers, par-
ticularly those having very different values of the plateau modulus,162 and (vi) 
generalizing rubber-elasticity models to include viscoelastic effects as well.

For purposes of illustration, it is useful to consider some studies of Op-
permann and coworkers163, 164 on end-linked PDMS networks of different 
functionalities, since some of the aforementioned issues arose in the anal-
ysis of their experimental data.96 Here, studies of the small-strain shear 
modulus of end-linked PDMS networks with pentafunctional junctions 
were carried out as a function of network chain density. The data agree 
with predictions of the molecular theories at larger values of the chain or 
junction densities. At lower junction densities however the measured 

XL functionality, φ
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Figure 7.8:
The effect of cross-link functionality on 2C2/2C1.

Figure 7.9:
Sketch of an interchain entanglement.
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moduli are significantly larger than the predicted ones. Part of the differ-
ence, but probably not all, is due to problems in bringing such lightly 
cross-linked networks to elastic equilibrium in the unswollen state. Fi-
nally, the moduli tended to zero as the junction density went to zero as it 
should since PDMS in the liquid state above Tg.

The departure of the experimental results from the simple molecular 
theory when the network chains are long indicates the presence of addi-
tional contributions to the modulus. The question is whether the depar-
tures result from trapped entanglements or simply from the presence of 
other chains sharing the volume of a given network chain. One important 
difference between the two types of constraints involves their depend-
ence on network swelling. The localized, permanent entanglements should 
be independent of swelling, while the more diffuse interchain interactions 
should decrease with increased swelling. The contributions from trapped 
entanglements should therefore persist even in highly swollen networks, 
and therefore contribute to the phantom modulus. For these reasons, it is 
quite important to carry out measurements of the modulus versus the 
degree of swelling, with the results at the highest degrees of swelling pre-
sumably being least complicated by nonequilibrium effects.

If one makes a network in the extremely dilute state so that there is no 
chain interpenetration during its formation, the result will be a “phan-
tom-structure state” in which the chains can seemingly pass through one 
another. Experimentally, network formation in the dilute state decreases 
both the modulus and its dependence on elongation (the “C2 effect”).96 It 
was observed that the number of entanglements resulting from the dis-
perse interpenetration of chains in the cross-linked state were far more 
numerous than the specific localized points along the chain. Definitive 
experiments of this type would do much to resolve the nature and impor-
tance of chain entanglements in network structures at elastic 
equilibrium.

7.2.4 Interpretation of Ultimate Properties

Ultimate properties of unfilled elastomers at high elongations reveal how 
model networks can clarify elastomer properties. An upturn in modulus 
(as in figure 7.18-A) is frequently exhibited by elastomers at very high 
elongation.121, 124, 126, 165 The upturn is very important since it corresponds 
to a significant toughening of the elastomer; its molecular origin,  
however, has been the source of some controversy.166 The upturn has  
been widely attributed to the “limited extensibility” of the network 
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chains—that is, to an inadequacy in the Gaussian distribution function. 
Specifically the Gaussian approximation does not assign a zero probability 
to a configuration unless the end-to-end separation is infinite. Since the 
increase in modulus had generally been observed only in networks that 
can undergo strain-induced crystallization, however, the increase could 
be due to the crystallites acting as additional cross links.

Reinforcement resulting from strain-induced crystallization is identified 
by the fact that the higher the temperature, the lower the extent of crystal-
lization and the worse the ultimate properties. The effects of an increase in 
swelling were found to parallel those for an increase in temperature, as ex-
pected, since diluent also suppresses network crystallization.167, 168 On the 
other hand, in those cases where the upturns are due to limited chain exten-
sibility, increased temperature has little effect on the upturns.96 Also, in 
these cases swelling can even make the upturns more pronounced because 
of the already-imposed stretching of the chains from the dilational effects 
of the swelling. Thus, the effects of temperature or swelling represent a way 
to determine whether the upturns are due to strain-induced crystallization 
or to a non-Gaussian contribution arising from limited-chain extensibility.

Attempts were made to observe upturns from non-Gaussian effects in 
noncrystallizable networks using end-linked, noncrystallizable model 
PDMS networks described section 5.3. These networks have high extensi-
bilities, presumably because of the very low incidence of dangling-chain 
network irregularities. Extensibility is particularly high when networks 
are prepared from a mixture of very short chains (around a few hundred g 
mol-1) with long chains (around 18,000 g mol-1), giving a bimodal distribu-
tion of network chain lengths.169 Apparently the short chains are impor-
tant because of their limited extensibilities, and the long chains because 
of their ability to retard the rupture process. Such “bimodal” model net-
works are discussed further in section 7.3.2

Stress-strain measurements on bimodal PDMS networks exhibited up-
turns in modulus that were much less pronounced than those in crystal-
lizable polymer networks. The upturns are independent of temperature 
and are not diminished by incorporation of solvent. These characteristics 
are expected for the case of limited chain extensibility.166, 170

7.2.5 Dangling-Chain Networks

Since dangling chains are imperfections in a network structure, their 
presence should have a detrimental effect on ultimate properties such as 
the tensile strength, as gauged by the nominal stress, f*, at rupture, f*r. 
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This expectation is confirmed by an extensive work on tetrafunctionally 
cross-linked PDMS networks. Some pertinent results are shown schemat-
ically as a function of the molecular weight between cross-links in  
figure 7.10.171 The largest values f*r were observed for the networks pre-
pared by selectively joining functional groups occurring as chain ends (or 
as side groups) on the chains, which leads to low incidence of dangling 
ends. As expected, the lowest values of the ultimate properties generally 
occur for the networks cured by radiation (ultraviolet light, high-energy 
electrons, and γ radiation). The peroxide-cured networks are intermediate 
to these two extremes, with the ultimate properties presumably depend-
ing on whether or not the free radicals generated by the peroxide are suf-
ficiently reactive to cause some chain scission. Similar results were 
obtained for the maximum extensibility. These observations are certainly 
interesting, but they are somewhat deficient in that information on the 
number of dangling ends is generally not available.

Quantitative information has been obtained using the specific chemi-
cal reactions used to form ideal elastomers but modified to prepare inten-
tionally nonideal networks containing known numbers and lengths of 
dangling-chain irregularities (figure 7.11).172 If more chain ends are pres-
ent than reactive groups on the end-linking molecules, then dangling 
ends result and their number is directly determined by the stoichiometric 
imbalance. The length of the dangling ends is of necessity the same as 
those of the elastically effective chains, as shown in part a of the figure. 
This constraint can be removed by separately preparing monofunctionally- 
terminated chains of any desired lengths and attaching them as shown in 
part b.

f*
r

Mc

End linking

Peroxide
thermolysis

High-energy
irradiation

Figure 7.10:
Values of the ultimate strength shown as a function of the molecular weight between 
cross links for three cross-linking methods.
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More definitive come from a series of model networks prepared by 
end linking vinyl-terminated PDMS chains.171, 173 The tetrafunctional 
end-linking agent was varied at levels below stoichiometric balance be-
tween its active hydrogen atoms and the chains’ terminal vinyl groups. 
The ultimate properties of these networks, with known numbers of 
dangling ends, were then compared with those obtained on networks 
with negligible numbers of these irregularities.171 Values of f*r of the 
networks containing the dangling ends was lower than that of the 
more perfect networks, with the largest differences occurring at high 
proportions of dangling ends (low 2C1), as expected.171 These results, 
shown schematically in figure 7.12, thus confirm the results shown in 
figure 7.10. Maximum extensibility shows a similar dependence, as 
expected.

7.2.6 Interpenetrating Networks

If two types of chains have different end groups, then it is possible to end 
link them simultaneously into two networks that interpenetrate one an-
other.174 Such a network (figure 7.13) could, for example, be made by re-
acting hydroxyl-terminated PDMS chains with tetraethoxysilane (in a 
condensation reaction), while reacting vinyl-terminated PDMS chains 

(a) (b) 

Figure 7.11:
Two end-linking techniques for preparing networks with known numbers and lengths of 
dangling chains. In part a, the dangling chains are produced by having more chain ends 
than complementary groups on the end-linking agent, and in part b by preparing some 
chains to have reactive groups on only one of the two chain ends.
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mixed into them with a multifunctional silane (in an addition reac-
tion).175 Interpenetrating networks (IPNs) can be unusual with regard to 
both equilibrium and dynamic mechanical properties. For example,  
such materials can have considerable toughness and unusual damping 
characteristics.

2C1, N mm–2

f*
r

Dangling-chain network 

Stoichiometrically balanced 

0.20 0.05 

Figure 7.12:
The ultimate strength as a function of the high-deformation modulus for networks that 
either contain a negligible number of dangling ends (stoichiometrically balanced end 
linking) or contain dangling ends introduced by using less than the stoichiometrically 
required amount of end-linking agent. In the latter case, decrease in 2C1 corresponds to 
increase in the number of dangling ends.

Figure 7.13:
An interpenetrating network structure in which one network is generated by a conden-
sation end-linking reaction and the other by an additional end-linking reaction (heavier 
lines).
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PDMS has been combined with a number of other polymers to form 
IPNs. Examples involve cellulose acetate butyrate,176, 177 fluorinated acry-
lates,178 polycarbonates,179 epoxies,180, 181 poly(vinyl alcohol),182 and 
poly(N-vinyl-2-pyrrolidone).183

7.2.7 Sorption and Extraction of Diluents

7.2.7.1 General Approach

Swelling is an elastomeric deformation that specifically addresses the rate 
at which diluent absorbs into a network of known “pore size,” and how 
rapidly it can subsequently be extracted.184–187 The rate of absorption or 
extraction can be used to estimate diffusion coefficients. Extraction effi-
ciencies are related to the extent of reaction in the end-linking procedure 
used to form the network and the degree to which the extractable chains 
are entangled with the network chains. Of interest is the dependence of 
these quantities on the molecular weight, Mc, of the network chains (as a 
measure of pore size), the molecular weight, Md, of the diluent, the struc-
ture of the diluent (linear, branched, or cyclic), and whether or not the 
diluent is present during the end-linking process.

7.2.7.2 Linear Diluents

One way of obtaining a network swollen with diluent is to form the net-
work in a first step and then absorb an unreactive diluent into it. Alterna-
tively, the same diluent can be mixed into the reactive chains prior to end 
linking. In either case, oligomeric and polymeric diluents are of greatest 
interest. The diluent must be functionally inactive for it to “reptate” 
through the network rather than being bonded to it. Both types of net-
works can then be extracted to determine the ease with which various 
diluents can be removed, as a function of Md and Mc.

The ease with which a diluent could be removed from a network was 
found to decrease with increase in Md and with decrease in Mc, as expected. 
High molecular weight diluents are extremely hard to remove at values of 
Mc of interest in the preparation of model networks, complicating the 
analysis of soluble polymer fractions in terms of degrees of perfection of 
the network structure. The diluents added after the end linking are more 
easily removed, possibly because they were less entangled with the net-
work structure.
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7.2.7.3 Branched Diluents

The extraction of branched diluents is quite important. For example, in 
the preparation of networks by radiation cross linking there are presuma-
bly large numbers of soluble molecules formed that are highly branched 
(because of the essentially uncontrolled formation and coupling of free-
radical species).188 Another example occurs in the area of controlled re-
lease of drugs from cross-linked reservoirs.189 Some of the drugs diffusing 
out of such delivery systems are assuredly “nonlinear,” so understanding 
such systems is likely to become more important as interest shifts to 
larger and larger molecules (such as polypeptides). Finally, molecules with 
long branches can greatly affect the flow characteristics of a polymer,190 to 
the extent that they can be used as processing aids in polymeric systems 
that will subsequently be cross linked. The ultimate in branched systems, 
“dendrimers,”191–194 should also find applications in network structures.

7.2.7.4 Polar Diluents

There is a complication that can occur in the case of networks of polar 
polymers at relatively high degrees of swelling.170, 195 The observation is 
that different solvents, at the same degree of swelling, can have signifi-
cantly different effects on the elastic force, apparently due to a “specific 
solvent effect” on the unperturbed dimensions that appears in the various 
molecular forms of the elastic equations of state. Although frequently ob-
served in studies of the solution properties of un-cross-linked polymers,196, 
197 the effect is not well understood. The effect is apparently partly due to 
the influence of the solvent’s dielectric constant on the coulombic interac-
tions between parts of a chain, but probably also to solvent-polymer seg-
ment interactions, which change the conformational preferences of the 
chain backbone.195

7.3 MULTIMODAL NETWORKS

7.3.1 Introduction

Multimodal networks represent a method to determine the effect of net-
work chain-length distribution124, 126 on rubberlike elasticity. Chain-
length distribution has not received much attention even though 
manipulation of the chain-length distribution can give large improve-
ments in mechanical properties. There are two primary reasons for this 
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neglect. On the experimental side, the cross-linking techniques tradition-
ally used to prepare the multimodal network structures have been uncon-
trolled.71, 124, 126 The resulting network chain-length distributions are 
unimodal and probably very broad. On the theoretical side it turned out to 
be convenient, if not necessary, to assume a distribution of chain lengths 
that is not only unimodal but also monodisperse.71, 124

There are a number of reasons for developing techniques for controlling 
network chain-length distributions; one is to check the “weakest-link” 
theory198 for elastomer rupture, which states that the shortest chains are 
the “culprits” in causing rupture. Due to their limited extensibility, short 
chains supposedly break at relatively small deformations and then act as 
rupture nuclei.

The preparation of controlled-structure networks requires special 
cross-linking reactions, such as end linking. In the case of a bimodal distri-
bution, the network consists of a combination of unusually short chains 
(molecular weights of a few hundred) and the much longer chains typi-
cally associated with elastomeric behavior (molecular weights of 10,000 
or 20,000) as in figure 7.14. Bimodal distributions clarify the dependence 
of ultimate properties on non-Gaussian effects arising from limited chain 
extensibility and elucidate synergistic effects that maximize the ultimate 
properties.

Figure 7.14:
A network having a bimodal distribution of network chain lengths. The short chains are 
shown by heavier lines, and the dots represent the cross links, typically resulting from 
the end linking of functionally terminated chains.
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7.3.2 Bimodal Networks

7.3.2.1 Introduction

“Bimodal” elastomers prepared by end linking have very good ultimate 
properties, which underlies recent interest in such materials.71, 96, 139, 199–204 
There have been several patents in the area.205–207 In additional to this ex-
perimental work, there are now theoretical studies addressing the novel 
properties of bimodal elastomers.208–223

7.3.2.2 Materials and Synthetic Techniques

Most bimodal networks have been prepared from PDMS, [–Si(CH3)2O–].203, 204 
PDMS is readily available with either hydroxyl or vinyl end groups and the 
reactions in these groups are relatively free of complicating side reactions. The 
end-linking reactions have generally involved hydroxyl-terminated 
chains, which are readily obtained from the usual ring-opening polymer-
ization of the corresponding cyclic trimer or tetramer.224 The ends of the 
chains react with the alkoxy groups in a multifunctional organosilicate, as 
described in chapter 3. In the application considered here, a mixture of 
short and long hydroxyl-terminated polymers is end linked. The end link-
ing can take place in either the undiluted state or in solution.225 Polyure-
thane elastomers have also been studied in this way.226 In some cases, the 
end linking was carried out in two steps.227 An alternative approach in-
volves the addition reaction between vinyl groups at the ends of a polymer 
chain and the active hydrogen atoms on silicon atoms in the [Si(CH3)HO-] 
repeat units in an oligomeric poly(methyl hydrogen siloxane).

One can also introduce short chains by using a trifunctional end linker 
with its fourth group able to associate with a similar group from another 
trifunctional end linker.228 Yet another alternative is to have potential 
cross-linking sites that are closely spaced in one part of the chain back-
bone but widely spaced in another part.143, 229 All these approaches can be 
extended to higher modalities (trimodal, etc.).

There is evidence of large-scale supramolecular structures in end-
linked PDMS elastomers, particularly in the case of bimodal distribu-
tions.230–233 Small-angle neutron scattering on bimodal networks of 
poly(tetrahydrofuran) suggests segregation of short and long chains.234

The distribution of network chain lengths in a bimodal elastomer can 
be much different from the usual unimodal distribution obtained in less-
controlled methods of cross linking. Figure 7.15 shows a schematic 
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distribution for the important example in which there is simultaneously a 
large number fraction of short chains and a large weight fraction of long 
chains. The major difference is the significant numbers of both very short 
chains and very long chains, which contrasts sharply with the small 
amounts of such chains in a typical unimodal distribution. The case 
shown, where the short chains predominate numerically, is of interest 
with regard to improvements in mechanical properties.96 Studies have 
documented the effects of chain lengths, composition, and cross-link 
functionality.235–239

7.3.2.3 Testing of the Weakest Link

The weakest-link theory198 was tested by preparing end-linked networks 
containing increasing amounts of short chains, on the order of  
10–20 mol %.71, 199 In striking disagreement with the suggested mode of 
elastomer failure, these elastomers showed no significant decrease in ul-
timate properties with increasing number of short chains. Networks are 
apparently much more resourceful than given credit for in the weakest-
link theory. Apparently, the strain is continually being reapportioned 
during deformation, such that the more easily deformed long chains bear 
most of the burden of the deformation (figure 7.16). Thus, the short 
chains do not contribute significantly until just prior to rupture. The flaw 
in the weakest-link theory is the assumption that all parts of the network 
deform affinely, whereas the deformation is markedly nonaffine.71, 96

M

N
M

Figure 7.15:
Network chain-length distributions in which NM is the number of chains in an infinitesi-
mal interval around the specified value of the molecular weight M. For reference purposes, 
a unimodal distribution is shown between the two parts of the bimodal distribution.
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But what happens in the case of bimodal networks having such over-
whelming numbers of short chains that they cannot be ignored? There is a 
synergistic effect leading to mechanical properties that are better than 
those obtainable from the usual unimodal distribution. The following sec-
tions describe these results in detail.

7.3.2.4 Elongation Results

Studies of bimodal networks have focused elongation because of the sim-
plicity of this type of deformation. Examples of other deformations, 
equibiaxial extension (compression), shear, and torsion, are discussed 
later.

Many of the stress-strain isotherms of bimodal networks were ob-
tained on PDMS elastomers in the vicinity of 25°C, a temperature suffi-
ciently high to suppress strain-induced crystallization. These elongational 
isotherms show greatly improved the ultimate properties (figure 7.17).203, 
204 If the network consists entirely of short chains, then the material is 
brittle (which means that the maximum extensibility is very small). If the 
network consists of long chains, the ultimate strength is very low. As a 
result, neither unimodal material has a large area under its stress-strain 
curve and, thus, neither is a tough elastomer.

Figure 7.16:
The effect of deformation on an idealized network segment consisting of a long chain 
bracketed by two very short chains. The left sketch shows the undeformed segment, 
and the middle and right sketches show the segment deformed affinely and nonaffinely, 
respectively.
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Bimodal networks can have high ultimate strengths without the usual 
diminished maximum extensibilities, corresponding to high values of the 
energy required for rupture, which makes them unusually tough elasto-
mers. Apparently the short chains act primarily to increase the ultimate 
strength through their limited deformability, while the long chains some-
how thwart the spread of rupture nuclei that would otherwise lead to cat-
astrophic failure. This situation is analogous to what executives like to call 
a “delegation of responsibilities.” Related improvements in mechanical 
properties have also been reported for other bimodal materials such as 
polyurethane elastomers.240

There are three requirements for bimodal enhancements. The ratio, MS/ML, 
of molecular weights of the short and long chains must be very small (i.e., that 
their molecular weights are very different). The second is that the short chains 
must be as short as possible (e.g., as low as 200 g/mol). Finally, there should be 
a large number concentration of the short chains, typically around 95 mol %.

Since this network approach to property improvement is of considera-
ble practical and fundamental interest, a number of studies on PDMS elas-
tomers were carried out to determine the impact of the molecular weights 
of the short chains, the proportions of short and long chains, and cross-
link functionalities.203, 204 The ultimate strength goes through a maximum 
with increasing amount of short chains, frequently in the vicinity of 95 
mol % short chains. Too many short chains may make the elastomer brit-
tle. These results are important in that they can be used to optimize im-
provements in mechanical properties.

The properties of several additional types of bimodal networks were 
also investigated. The first of these involves prereacting the short chains 
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Figure 7.17:
Typical dependence of nominal stress against elongation for two unimodal networks 
having either all short chains or all long chains, and a bimodal network having some of 
both.
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prior to incorporating the long ones.207, 241, 242 The short-chain component 
can even be prepared separately, ground up, and then blended into an-
other elastomeric network.243 The resulting network can be spatially as 
well as compositionally heterogeneous, in that many of the short chains 
will be segregated into densely cross-linked domains that are only lightly 
cross linked to other such domains.241 These networks could serve as 
models for inhomogeneously cross-linked elastomers, such as those cured 
by thermolysis of a partially miscible peroxide.

Another approach is based condensation and addition end-linking re-
actions carried out simultaneously and independently, which can give rise 
to the interpenetrating network structure.96 The distribution of network 
chains can be made bimodal, even though the short chains and long chains 
communicate only through their entanglements. Finally, it is also possible 
to reinforce any type of bimodal network with filler particles, thereby fur-
ther improving its mechanical properties.96

Measurements of the mechanical and optical properties of bimodal net-
works as a function of temperature and degree of swelling were used to 
test further the conclusion cited in section 7.3.2.4 that crystallization was 
not the origin of the improved properties.96, 203, 204, 244,246 For example, 
stress-strain measurements on such bimodal PDMS networks exhibited 
upturns in modulus that were much less pronounced than those in crystal-
lizable polymer networks such as natural rubber or cis-1,4-polybutadiene. 
The top portion of figure 7.18 illustrates upturns in the case of 
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Figure 7.18:
Schematic stress-strain isotherms in elongation for a unimodal elastomer in the Mooney-
Rivlin representation of modulus against reciprocal elongation. The isotherms are repre-
sented as the dependence of the reduced stress ([f*] = f */(α – α-2) on reciprocal elongation. 
(f*= f/A*, f = elastic force, A* = undeformed area, α = elongation). The top three are for a 
crystallizable network: curve A for a relatively low temperature, B for an increased tem-
perature, and C for the introduction of a swelling diluent. Isotherm D is for an unswollen 
unimodal network that is inherently noncrystallizable.
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a crystallizable elastomer. Upturns decrease or disappear upon either an 
increase in temperature or addition of a diluent, as shown by two of the 
additional isotherms. The upturns due to crystallization are absent in the 
case of an elastomer that is inherently noncrystallizable, such as a ste-
reoirregular polyacrylate.

In related experiments, temperature was found to have little effect on 
the Mooney-Rivlin isotherms for bimodal networks of (noncrystallizing) 
PDMS, as would be expected if limited chain extensibility causes the 
upturn (lower two isotherms in figure 7.19). Also, stress-temperature 
(“thermoelastic”) and birefringence-temperature measurements showed 
no discontinuities or discernible changes of slope. Rather strikingly, swell-
ing can even make the upturns in modulus more pronounced (upper iso-
therm in figure 7.19).166, 170, 247 Apparently, the enhanced upturns are due 
to the chains being stretched in the solvent dilation process, prior to fur-
ther stretching in the elongation experiments. In contrast, the upturns in 
crystallizable polymer networks disappear upon sufficient swelling.

A final experiment of relevance concerns the spatially heterogeneous 
PDMS networks in which the short chains are clustered. If the upturns in 
modulus were due to some type of intermolecular organization such as 
crystallization, then the behavior would presumably have been affected 
by this change in spatial heterogeneity. Instead, there was no discernible 
effect on the measured elastomeric properties. Also spectroscopy shows 
that bond-angle deformation was not significant in highly elongated 
PDMS elastomers.248

The foregoing findings argue against the presence of any crystallization 
or other type of intermolecular ordering. The upturns thus do seem to be 
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Figure 7.19:
Schematic Mooney-Rivlin isotherms for a noncrystallizable bimodal network: curve A for 
a relatively low temperature, B for an increased temperature, and C for the introduction 
of a swelling diluent.
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intramolecular in origin. The observed increases in modulus and ultimate 
strength are due to the limited extensibility of the short network chains. 
In qualitative terms, the chains exhaust their spatial configurations, their 
entropies plummet, and the elastic force rises.

It is possible to characterize this non-Gaussian limited extensibility 
more quantitatively in a number of ways. The first involves the interpreta-
tion of limited chain extensibility in terms of the configurational charac-
teristics of the PDMS chains making up the network structure.170 The 
upturn in modulus generally begins at approximately 60–70% of maxi-
mum chain extensibility.249 This value is approximately twice that esti-
mated previously124 from stress-strain isotherms of elastomers that may 
have been undergoing strain-induced crystallization.

More quantitative characterization of limited chain extensibility re-
quires a non-Gaussian distribution function124 for the end-to-end separa-
tion, r, of the short network chains. The Fixman-Alben distribution250 was 
used211 to calculate stress-strain isotherms in elongation for bimodal 
PDMS networks. Good agreement was found between theory and experi-
ment. Other non-Gaussian distribution functions have also been success-
fully used.96, 209, 210 The experimental isotherms can also be interpreted 
using the van der Waals theory of rubberlike elasticity.96, 251

Monte Carlo simulations utilize the wealth of information that rota-
tional isomeric state theory provides on the spatial configurations of chain 
molecules. Monte Carlo calculations were used to simulate spatial configu-
rations and thus distribution functions for the end-to-end separations of 
the chains.71, 252 These distribution functions replaced the Gaussian func-
tion in the standard three-chain model124 in the affine limit to give the 
desired non-Gaussian theory of rubberlike elasticity. Stress-strain iso-
therms calculated in this way were strikingly similar to the experimental 
isotherms obtained for the bimodal networks.71, 96 The overall theoretical 
interpretation is thus quite satisfactory and would encourage other appli-
cations of these distributions, such as segmental orientation in networks 
containing very short chains. Such segmental orientation is of critical im-
portance, for example, with regard to strain-induced crystallization.

A second important characteristic of an elastomeric network is the the 
elongation at rupture. Results on PDMS indicate that rupture occurs at 
approximately 80–90% of maximum chain extensibility.96

PDMS networks are unsuitable for characterizing the effects of bimodality 
on strain-induced crystallization, because of their very low crystallization tem-
peratures. Poly(ethylene oxide), however, has a relatively high melting point  
(~ 65°C) 253, 255 and thus readily undergoes strain-induced crystallization. De-
creasing temperature increases the extent to which the ultimate strength of the 
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bimodal networks exceeds that of the unimodal ones (figure 7.20).256 These re-
sults imply that bimodality facilitates strain-induced crystallization,96 possibly 
through increased orientation of the longer, more easily crystallizable chains, 
into crystallization nuclei.257 Similar conclusions have been reached in studies 
of bimodal networks of elongated poly(tetrahydrofuran),258 but bimodality ap-
parently had little effect in the undeformed state.259

In practical terms, the foregoing results demonstrate that short chains 
of limited extensibility may be bonded into a long-chain network to im-
prove its toughness. It is also possible to achieve the converse effect. Thus, 
bonding a small number of relatively long elastomeric chains into a short-
chain PDMS thermoset greatly improves both its energy of rupture and 
impact resistance (figure 7.21).260 Approximately 95 mol % short chains 
gave the maximum effect for the molecular weights involved. Lower con-
centrations give smaller improvements and higher concentrations will 
gradually convert the composite to a more rubberlike material.

7.3.2.5 Results in Other Mechanical Deformations

There are numerous other deformations of interest, including compres-
sion, biaxial extension, shear and torsion.124, 261 Equibiaxial extension was 
obtained by inflating sheets of unimodal and bimodal networks of 
PDMS.225, 262 Upturns in the modulus occur at high biaxial extensions, as 
expected. Pronounced maxima precede the upturns (figure 7.22), which is 
yet to be explained by molecular theories.
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Figure 7.20:
Ultimate strength, as represented by the modulus at rupture, shown as a function of the 
molecular weight between cross links for a unimodal and bimodal elastomer compared at 
two temperatures. The improvement is larger at the lower temperature, presumably due 
to enhanced strain-induced crystallization.
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Elastomeric networks can be studied in pure shear by stretching a sheet 
that has a large ratio of length to width, in the direction perpendicular to 
the length. Pure shear is compared to simple shear by Treloar (ref. 124, 
page 84). In shear measurements on some unimodal and bimodal net-
works of PDMS263 the bimodal PDMS networks showed large upturns in 
the pure-shear modulus at high strains that were similar to those reported 
for elongation and biaxial extension.
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Figure 7.21:
The energy required for rupture Er and the impact strength IS shown as a function of 
composition for typical bimodal networks that are sufficiently brittle for such testing.
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Figure 7.22:
Representative stress-strain isotherm for a bimodal elastomer in both uniaxial extension 
(left side) and biaxial extension (right side).
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Very little work has been done on elastomers in torsion (twisting a cy-
lindrical sample around its long axis). More results are presumably forth-
coming, particularly on bimodal networks and on networks containing 
some of the unusual fillers introduced in situ by hydrolysis of organome-
tallic compounds such as silicates or titanates.96, 264 In any case, the same 
types of bimodal PDMS networks showed rather different behavior in tor-
sion.265 Specifically, ambiguous upturns in modulus were observed at large 
deformations. It has not yet been established whether the lack of upturn 
is due to the inability to reach sufficiently large torsions or whether there 
is some inherent difference in this type of deformation.

Tear tests have been carried out on bimodal PDMS elastomers266–269 
using the standard “trouser-leg” method. Tear energy is considerably in-
creased for a bimodal distribution, with documentation of the effects of 
compositional and ratio of molecular weights of the short and long 
chains. The increase in tear energy did not seem to depend on tear rate,266 
an important observation that suggests that viscoelastic effects are not 
of paramount importance in explaining the observed improvements. 
Figure 7.23 shows some of these results schematically.

A subsequent series of shear tests267 established the dependence of the 
tearing properties on the composition of the bimodal networks and the 
lengths of the chains used to prepare them. The maxima the tearing 
energy versus the amount of the short-chain component locates the com-
position giving the greatest increases in tear energy. Tensile strength de-
pends on the ratio, MS/ML, of molecular weights of the two components 
(figure 7.24). The observed increase in strength with deceased molecular 
weight of the short chains must eventually decrease reverse when the 
chains become too short to have any elastic effectiveness at all. It is 
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Figure 7.23:
Tearing energies for a unimodal and bimodal elastomer as a function of tearing rate
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important to establish the molecular weight at which this decrease occurs 
for a variety of deformations and a number of different elastomers.

Some Rheovibron viscoelasticity results have been reported for bi-
modal PDMS networks.270 Measurements are first carried out on uni-
modal networks consisting of the chains used in combination in the 
bimodal networks. One of the important observations was the depend-
ence of crystallinity on the network chain-length distribution.

Some measurements have been made on the permanent set of PDMS 
networks in compressive cyclic deformation (figure 7.25).271 There ap-
peared to be less permanent set or creep in the case of the bimodal elasto-
mers, consistent in a general way with some early results for polyurethane 
elastomers.272 Specifically, cyclic elongation measurements on unimodal 
and bimodal networks indicated that the bimodal ones survived many 
more cycles before fatigue failure. The number of cycles to failure is ap-
proximately an order of magnitude higher for a bimodal network, at the 
same modulus (Mod10) at 10% deformation96 Also viscoelastic effects in 
bimodal networks are not simple averages of contributions from the short 
and long chains.270, 273

7.3.2.6 Results on Nonmechanical Properties

Birefringence can be used to characterize non-Gaussian behavior in PDMS 
bimodal elastomers.96, 274– 278 A large decrease the stress-optical coefficient 
(ratio of birefringence to stress) was observed over a relatively small range 
in elongation,78 presumably due to limited extensibility of the short chains. 
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Figure 7.24:
Maximum tensile strengths in tearing for bimodal elastomers as a function of the ratio of 
the molecular weights of the short and long chains.
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Nuclear magnetic resonance (NMR) has also been used to characterize 
chain-segment orientation in PDMS bimodal materials.279

Another method, “thermoporometry,” is based on the fact that solvent 
molecules constrained to small volumes form small crystallites and there-
fore exhibit lower crystallization temperatures.280– 286 Differential scanning 
calorimetry on solvent molecules constrained in the pores of PDMS elasto-
mers shows several crystallization temperatures, which could be indicative 
of an unusual distribution of pore sizes.287 The effects are most pronounced 
for trimodal networks, which are discussed later in this chapter.

Calorimetric measurements on bimodal poly(ethylene oxide) networks 
indicate that the short chains decrease crystallinity in the unstretched 
state.257 This is an intriguing result since short chains increase the extent 
of crystallization in the stretched state.

When cyclic molecules are present during the end-linking reaction, the 
larger molecules tend to get trapped by being threaded with chains subse-
quently bonded into the network structure. Such experiments have also been 
carried out using a bimodal distribution of end-linkable PDMS chains.288

Additional insights into the dynamics and structure of bimodal elasto-
mers come from experiments using dynamic light scattering,289 NMR 
spectroscopy,290, 292 neutron scattering,213 and computer simulations on 
chain orientations and network mechanical properties.214

7.3.2.7 Inadvertent Bimodal Networks

Elastomers cured with sulfur frequently have improved mechanical prop-
erties when the curing conditions are chosen to give cross links that 
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Figure 7.25:
Dependence of relative length of a sample on cyclic compressive stress as a function of 
time for a unimodal and bimodal elastomer.
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consist of chains of sulfur atoms.293 If such polysulfidic cross links can 
themselves act as elastomeric network chains, then a bimodal network is 
produced, albeit inadvertently (figure 7.26). Calculations are in good 
agreement with experiment.294

A similar situation may occur in the case of networks end linked using 
the addition reaction involving vinyl chain ends and hydrogen atoms in an 
oligomeric poly(methyl hydrogen siloxane).96, 154, 295–298 In the case of in-
complete reactions, the segments between the reacted silicon atoms on the 
oligomer may be long enough to act as elastically effective chains in a bi-
modal structure. Finally, a bimodal chain-length distribution has also 
been proposed to explain some unusual properties of polysiloxane net-
works that were post cured,299 elastomers prepared from two cross-linking 
systems,300 and elastomers reclaimed by ultrasonic devulcanization.301, 302

7.3.2.8 Other Materials in Which Bimodality Might Be Advantageous

There are other cases where a bimodal distribution of chain length or some 
other physical property can be advantageous, possibly through the idea of 
a “delegation of responsibilities.”96

In thermosets there seems to be an improvement in mechanical prop-
erties when the polymer being cured has a bimodal distribution of molec-
ular weight.303 In this case, the improvements may be due to different 
morphologies and degrees of inhomogeneity304, 305 resulting from the fact 
that the long chains in a bimodal distribution could have considerably 
lower solubility than the short chains. Also, it is well known that the flow 

Figure 7.26:
Sketch showing the difference between a monosulfidic (left portion) and a polysulfidic 
cross link (right portion). In the latter case, the chains of sulfur atoms may act as addi-
tional, elastically effective chains in what is essentially a bimodal network.
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characteristics of a polymer during processing162 can be adjusted by the 
addition of a small amount of polymer of either very low or very high mo-
lecular weight. Bimodal polyethylene is an example.306–308 In the case of 
branched polyethylenes, bimodal distributions of molecular weight affect 
thermal and crystallization behavior,309 long-term creep failure,310 and 
fracture.311 In the case of brushlike structures, it has been of interest to 
produce bimodal layers of poly(ethylene glycol) on gaseous colloidal 
particles.312

Another example is rubber-toughened thermoplastics in which an elas-
tomer is dispersed as domains within the thermoplastic matrix to im-
prove its mechanical properties.313, 314 A bimodal distribution of particle 
sizes gives the largest improvements.315–322 Perhaps the small particles are 
most efficient at stopping one type of failure mechanism, and the large 
particles another type. There is the possibility that a mixture of two chem-
ically different particles, such as silica (SiO2) and titania (TiO2),323 could 
have significant advantages in elastomer reinforcement, with one func-
tioning best at low and moderate temperatures and the other at elevated 
temperatures. In any case, the preparation of bimodal poly(organosiloxane) 
nanoparticles is of interest in its own right.324

These results can be brought into a broader context through applications 
not involving polymer networks. Example are the bimodal assemblies of 
diblock copolymer micelles and work on targeted bimodal imaging of pan-
creatic cancer.325 There has also been considerable interest in preparing 
porous materials having bimodal distributions of pore sizes.326–345 Frame-
works having trimodal pore distributions have also been prepared.346 Stud-
ies exist on bimodal magnetic-fluorescent nanostructures,347–349 size 
distributions of nanoparticles,350–352 bimodal arrays of nanoparticles on 
substrates,353 nanocomposite scaffolds,354 multimodal nanoparticles from 
miniemulsions,355 proton transport in Nafion,356 bimodal acid-base behav-
ior on water-silica interfaces,357 averaging effects in NMR attenuation in 
bimodal poly(methyl methacrylate) solutions,358 and electrospinning of bi-
modal fiber meshes.359 Other examples include mesoporous silica360 and 
bulk ultrafine-grained nickel.361 There have even been “ripening” studies of 
bimodally distributed AgCl nanoparticles.362

7.3.3 Trimodal Networks

Differential scanning calorimetry measurements exist on solvent mole-
cules constrained in the pores of a variety of PDMS elastomers. Some re-
sults on trimodal networks have been reported.287 The several 
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crystallization temperatures were observed for benzene, which presuma-
bly reflect the pore sizes present.

Work on the mechanical properties of trimodal elastomers is lim-
ited. The problem is the large number of variables involved, three mo-
lecular weights and two independent composition variables (mol 
fractions). For this reason, early mechanical property experiments in-
volved arbitrarily chosen molecular weights and compositions.363 Not 
surprisingly, only modest improvements in mechanical properties were 
obtained over the bimodal materials. Recent results on both bimodal 
and trimodal PDMS elastomers showed significant improvement over 
unimodal PDMS elastomers with regard to some mechanical properties 
such as toughness, but less pronounced increases in fracture energy.364 
In summary, trimodal elastomers do show some improvements over the 
bimodal ones.

There has been some NMR work on trimodal PDMS elastomers, with 
regard to thermal degradation365 and the presence of network heterogene-
ities.366 The idea of employing trimodality has also been employed in some 
triblock copolymers.367, 368

Recent computational studies214 indicate that it is possible to identify 
those molecular weights and compositions that should maximize im-
provement in mechanical properties. Such simulations are being extended 
to search for optimum properties of trimodal networks, specifically (i) the 
elastic modulus, (ii) maximum extensibility, (iii) tensile strength, and (iv) 
segmental orientability. Results369 suggest that a trimodal network pre-
pared by incorporating small numbers of very long chains into a bimodal 
network of long and short chains could significantly improve ultimate 
properties.

The interpretation of the attractive mechanical properties of bimodal 
networks has been in terms of the “delegation of responsibilities,” with 
the short chains serving in one role and the long chains in another. If 
this is picture is true, then it would be interesting to study networks 
having extraordinarily broad molecular weight distributions, in that 
there would be network chains of all conceivable lengths, available for 
any possible mechanism that would improve properties.96 Polymer pre-
pared from a single polymerization would not have a broad enough dis-
tribution, but the combination of a series of samples of gradually 
differing average molecular weights could yield the desired distribution 
(figure 7.27). An elastomer of this type might have unusually attractive 
mechanical properties.

Trimodal distributions have also been studied in nonpolymeric sys-
tems (e.g., in aluminum metal-matrix composites).370
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7.4 TRAPPING OF CYCLIC OLIGOMERS WITHIN NETWORK 

STRUCTURES

7.4.1 Experimental Results

If cyclic molecules are present during the end linking of chains, some will be 
trapped because of threading by the linear chains prior to the latter being 
chemically bonded into the network structure (figure 7.28).96, 288, 371, 373 The 
fraction trapped is estimated from solvent extraction studies. Figure 7.29 
shows schematically the fraction trapped as a function of degree of polym-
erization of the cyclic.374 The results were independent of intermingling 
time,288 thus demonstrating the high mobility of the PDMS chains. As ex-
pected, very small cyclics don’t get trapped at all, but the largest cyclics do. 
The following section describes the interpretation of these data in terms of 
the configurational characteristics of PDMS chains.

Cyclics can change the properties of the network. Since cyclics restrict 
motion of the network chains, they should increase the modulus of an elasto-
mer. Small but significant increases in low-deformation modulus have in fact 
been observed.372 Also, when PDMS cyclics are trapped in a thermoplastic, 
they can act as a plasticizer that is in a sense intermediate to the usual exter-
nal (dissolved) and internal (copolymerized) varieties. Interesting changes in 
mechanical properties have been observed in materials of this type.375, 376

7.4.2 Theoretical Interpretation

The trapping process has been simulated using Monte Carlo methods 
based on a rotational isomeric state model 377–379 for the cyclic chains.374 
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Figure 7.27:
The network chain-length distributions shown in figure 7.15, with the addition of the 
extremely broad “pseudo-unimodal” distribution obtainable by combining a number of 
samples of the same polymer made in different polymerizations.
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The first step is generation of a sufficient number of cyclic chains with the 
desired degree of polymerization having the known geometric features 
and conformational preferences. Matrix multiplication techniques 
common to rotational isomeric state theory are useful in the regard. Up to 
this point, the method is identical to that used to generate distribution 
functions for a non-Gaussian approach to rubberlike elasticity.380 In the 
present application, however, a chain having an end-to-end distance less 
than a threshold value is considered to be a cyclic. The coordinates of each 

b

Figure 7.28:
A tetrafunctional network containing cyclics (heavy lines). Cyclics a and b were trapped 
by linear chains that passed through them prior to end linking into a network structure.
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Figure 7.29:
Trapping efficiencies for cyclics as a function of cyclic size.
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“cyclic” chain thus generated are stored for detailed examination of the 
chain’s configurational characteristics such as the size of the “hole.” Of 
particular interest is the size of this hole in comparison with the known 
diameter, 7–8 Å, of the PDMS chain.

The trapping process was simulated using a torus centered around 
each repeat unit in the cyclic.374 Any empty torus was considered a 
pathway for a chain of specified diameter to thread and then incarcer-
ate the cyclic once the end-linking process has been completed. Simula-
tions were consistent with experimental trapping efficiencies. It is 
possible to interpret these experimental results in terms of a power law 
for the trapping probabilities and fractal cross sections for the PDMS 
chains.381

7.4.3 Olympic Networks

It may also be possible to use the trapping technique to prepare networks 
having no cross links whatsoever.382 Mixed linear chains, with large 
amounts of cyclics, are difunctionally end linked to yield an “Olympic” or 
“chain-mail” network (figure 7.30).371, 383 Such materials are similar in 
some respects to the catenanes and rotaxanes that have long been of inter-
est to a variety of scientists and mathematicians.384–386 Computer simula-
tions387 could establish the conditions most likely to produce these novel 
structures.

(a) (b)

Figure 7.30:
Preparation of a chain-mail or Olympic network, which has no cross links at all. Linear 
chains (light lines) passing through the cyclics (heavy lines) in part a are di-functionally 
end linked to form a series of interpenetrating cyclics in part b.
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7.5 ORIENTATION

When an elastomer is deformed, its network chains become oriented. Ori-
entation is of both fundamental and practical importance.71, 96, 388, 391 For 
example, since orientation decreases the entropy of the network chains, 
the melting points of the elastomer can increase significantly, which can 
induce crystallization. This strain-induced crystallization improves the 
mechanical properties of the elastomer.

In the case of polysiloxane elastomers, segmental orientation has been 
of interest for both elongation392, 393 and compression.394

7.6 SOME VISCOELASTIC RESULTS

Examples of early studies in this area include studies of PDMS liquids,395 
PDMS solutions (e.g., in toluene),396, 397 and PDMS elastomeric networks.398
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CHAP TER 8

Copolymers and Interpenetrating 
Networks

8.1 RANDOM COPOLYMERS

Random copolymers are prepared by the copolymerization of a mixture of 
cyclic oligomers.1–5 Although the resulting polymer can be quite blocky 
(figure 8.1), taking the reaction to equilibrium can give a polymer that is 
essentially random in its chemical sequencing.4, 6 One reason for prepar-
ing copolymers is to introduce functional species, such as hydrogen or 
vinyl side groups, along the chain backbone to facilitate cross linking. An-
other reason is the introduction of sufficient chain irregularity to make 
the polymer inherently noncrystallizable.

Specific examples of comonomers include imides,7–12 perylenediimide,13 
urethane-ureas,14, 15 epoxies,16–19 other siloxanes,20–23 amides,24 styrene,25 
divinylbenzene,26 acrylics,27, 28 silsesquioxanes,29 polythiophenes,30 and 
poly(lactic acid).31 One novel combination is the preparation of polysiloxane-
based episulfide resins.32 An unusual application is the use of monomethyl-
itaconate-grafted polymethylsiloxane to induce crystal growth of CaCO3.33 
Polysiloxanes containing thermally curable brenzoxazine moieties in the 
main chain are also in the category.34

These and other copolymers have been extensively characterized by nu-
clear magnetic resonance (NMR) spectroscopy.35

8.2 BLOCK COPOLYMERS

The sequential coupling of functionally terminated chains of different 
chemical structure can be used to make block copolymers,36, 37 including 
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those in which one or more of the blocks is a polysiloxane.6, 38, 39 If the 
blocks are relatively long, separation into a two-phase system invaria-
bly occurs. Frequently, one block will be in a continuous phase and the 
other will be dispersed in domains having an average size the order of a 
few hundred angstroms. Such materials can have unique mechanical 
properties not available from homopolymer species. Sometimes similar 
properties can be obtained by the simple blending of two or more 
polymers.40

Examples of blocks used with polydimethylsiloxane (PDMS) include 
imides,41–48 epoxies,49 butadienes,50–54 ε-caprolactones,55 amides having tri-
chlorogermyl pendant groups,56 urethanes,57–60 ureas,61–65 poly(ethylene 
glycols),66 polystyrene,67–74 vinyl acetates,75, 76 acrylates or methacry-
lates,77–84 2-vinylpyridine,85 and even other polysiloxanes.86–88 Some results 
have also been reported for polyesters,89, 90 polyethers,91 hydroxyethers of 
bisphenol A,92 bisphenol A arylene ether sulfones,93 vinylpyridinebenzoxa-
zines,94 methyloxazolines,95 terpyridines,96 polysulfones,97, 98 γ-benzyl-L-
glutamate,99 and carboranes.100 Two other examples are foamed 
polypropylene101 and melamine resins.102 Even ABA,103, 104 ABC triblock co-
polymers,105 and ABCBA pentablock copolymers involving PDMS have been 
reported.106

In a number of cases, the block used with the PDMS is sufficiently 
polar to give an amphiphilic block copolymer. Such materials form inter-
esting structures in polar or nonpolar solvents. In the first case, the polar 
chains act like a corona around the nonpolar core, and in the latter, the 
nonpolar chains are a corona around the polar core. Examples include 
blocks of poly(ethylene oxide),107–112 acrylamides,113–115 sugars,116 glucono-
lactone,117 hydrolysable siloxanes,118 and maleic anhydride—vinyl ethyl 
ethers.119

Figure 8.1:
Types of copolymers.

Random

	 AABBBABBAABAAABBABAAA

Diblock

	 AAAAAABBBBB

Triblock

	 AAAAAABBBBBAAAAA

	 AAAAABBBBBCCCCC
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In some cases, grafting is used to form the copolymers. Examples of 
chains combined with PDMS in this way include poly(ethylene oxide),120–123 
fluorinated chains,124 alkyl acrylates 125 and alkyl methacrylates,126 poly(vinyl 
alcohol),127 poly(ether sulfones),128 and polyurethanes.129 Grafting has also 
been used to introduce t-butylamine and t-butylammonium biocidal func-
tionalities,130 and to improve the adhesion of silicone rubber to polyure-
thane.131 In other cases, the siloxane groups are simply placed on the ends of 
chains, such as onto some polybenzoxazines.132

In related work, NMR studies have been carried out on PDMS chains 
onto which octyl groups had been grafted.133 Other examples of grafted 
systems include poly(ethylene oxide),123 polyurethanes,131 poly(butyl 
methacrylate),126 and gelatin.134

8.3 INTERPENETRATING NETWORKS

In this type of material, two networks are formed, either simultaneously 
or sequentially, in such a way as to interpenetrate one another. The net-
works thus “communicate” with one another through interchain physical 
forces and entanglements, rather than through covalent bonds. A particu-
larly simple example is the simultaneous formation of two PDMS net-
works, one by a condensation end-linking reaction and the other by an 
addition end-linking reaction, with the two types of chains mixed at the 
molecular level.135, 136

A more complex example, with more novel properties, is the prepara-
tion of interpenetrating networks (IPNs) between PDMS and an organic 
thermoplastic polymer such as a nylon, polyurethane, or polyester. The 
preparation of this material, called Rimplast® by its developers,137 in-
volves a chemical reaction between a vinyl-functional polysiloxane 
blended into the thermoplastic, and a hydride-functional PDMS blended 
into more of the same thermoplastic. Small amounts of platinum catalyst 
are also present in both types of components. The polysiloxane content is 
typically around 10%. Pellets of both components are placed in an ex-
truder or other high-temperature processor where they melt into a uni-
form mass at approximately 300°C. The reaction between the two 
complementary types of PDMS results in a network evenly distributed 
throughout the thermoplastic as a “semi-IPN” in the sense that there is 
only one IPN (PDMS). The resulting composite has the desirable proper-
ties of both the PDMS (good lubricity, abrasion resistance, and dielectric 
properties), and the thermoplastic (good mechanical strength and mold-
ing characteristics).
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Other examples involving PDMS as one of the networks involve epox-
ies,138, 139 cellulose acetate butyrate,140, 141 polycarbonate,142 poly(vinyl al-
cohol),143 acrylates,144 fluorinated acrylate,145 N-vinyl-2-pyrrolidone,146 
and methacrylate/acrylamides.147
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CHAP TER 9

Composites

9.1 SOL-GEL CERAMICS

A relatively new area that involves silicon-containing materials is the syn-
thesis of “ultrastructure” materials (i.e., materials in which structure can 
be controlled at the level of 100 Å). An example is the “sol-gel” hydrolysis 
of alkoxysilanes (organosilicates) to give silica, SiO2.1–20 The reaction is 
complicated,7, 21–26 involving polymerization and branching, but the over-
all reaction may be written
	                          + → +Si(OR) 2H O SiO 4ROH4 2 2

	 (9.1)

where the Si(OR)4 organometallic species is typically tetraethoxysilane 
such as tetraethylorthosilicate (TEOS, with R being C2H5). In this applica-
tion, the precursor compound is hydrolyzed and then condensed to yield 
branched polymers. Eventually a continuous swollen gel is formed. The gel 
is dried at moderately low temperatures to remove volatile species, and 
then it is fired into a porous ceramic object that can then be densified and 
machined into a final ceramic part.

The production of ceramics by this novel route triggered interest in the 
ceramics community because of advantages over the conventional powder-
processing approach to ceramics. Advantages include (i) the higher purity 
of the starting materials, (ii) the relatively low temperatures required, (iii) 
the possibility of controlling the ultrastructure to reduce the microscopic 
flaws that lead to failure, (iv) the ease with which ceramic coatings can be 
formed, and (v) the ease with which ceramic alloys can be prepared (e.g., by 
hydrolyzing solutions of both silicates and titanates).

The sol-gel approach has been used to form ceramic-like phases in a 
variety of polymers. Poly(dimethylsiloxane) (PDMS) is the most popular. 
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PDMS is relatively weak and stands to benefit most from reinforcement. 
PDMS is easily absorbs the precursor materials generally used in the sol-
gel process. Nearly monodisperse silica microparticles can be obtained 
using siloxane elastomer mixtures.27 In some cases, the PDMS has been 
part of a copolymer, with ureas,28 imides,29 amideimides,30, 31 and diani-
lines.20 In other approaches, the particle surface is modified,32 for exam-
ple, with a polysiloxane.33 Siloxane/silica nanocomposites have also been 
used as “culture-stone-protective materials.”34

9.2 FILLERS IN ELASTOMERS

9.2.1 Approximately Spherical Particles

Sol-gel hydrolysis and condensation can be carried out within a poly-
meric matrix to generate particles of the ceramic material, typically with 
an average diameter of a few hundred angstroms.13–15, 35–37 Silica has been 
of particular interest in this regard38 because of its ecodesign, sustain-
ability, and recyclability.39 The use of hard, polysilicate particles has been 
explored in considerable detail.40, 41 The polymer typically has end groups, 
such as hydroxyls, that can participate in the hydrolysis-condensation 
reactions.42, 43 In some cases, amphiphilic PDMS networks have been 
used.44

Polysiloxanes have been particularly useful as templates and building 
blocks for nanostructured materials.45, 46 End groups improve bonding be-
tween the two rather disparate phases, but bonding agents may also be 
introduced for this purpose.47 Considerable reinforcement of elastomers, 
including those prepared from PDMS, can be achieved. Some PDMS sam-
ples have even been electrospun into fibers and fiber mats.48 In another 
novel approach, an emulsion technique was used to prepare particles in 
which the PDMS is entrapped in a silica-like matrix.49 It is also possible to 
use simultaneous vapor-phase polymerization to make hybrid organic/in-
organic thin films.50

Many of these nanocomposites have been characterized by nuclear mag-
netic resonance (NMR) spectroscopy,51–54 single-molecule spectroscopy,55 
and small-angle scattering.37, 56–58 Some applications require other measure-
ments, such as permeability59 or ionic conductivity.60 In the case of permea-
bility, the presence of the filler can substantially reduce flux by blocking 
low-resistance pathways and by modification of the elastomer in the vicin-
ity of the filler (figure 9.1).

Other properties of PDMS-silica nanocomposites that have been re-
ported include the glass transition temperatures, segmental dynamics,61–63 
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surface properties,64 thermomechanical behavior,65 optical properties,66 and 
degree of cross linking from the silica-based nanoparticles.67 Fluorescence 
analysis is also possible in silica-PDMS nanocomposites in which the poly-
mer is labeled with dansyl chromophores68 or lanthanide complexes.69–71

A variety of other nanoparticles have been formed by such in situ sol-gel 
reactions. Examples are the oxides of titanium,72–79 aluminum,72, 73 tanta-
lum,72, 80 zirconium,73, 77 niobium,80 and vanadium.81 Some nanocompos-
ites of this type have also included barium titanate,82 calcium oxide,83 
calcium salts,84 borates,85 HTiNbO5,86 and Eu3+ dopants.87

The sol-gel has a number of advantages over the conventional approach 
in which separately prepared filler particles are blended into the un-cross-
linked elastomer before vulcanization.88–90 The time-honored ex situ tech-
nique is difficult to control because the filler particles are generally 
agglomerated91 and the polymer is typically of high enough molecular 
weight to make the viscosity of the mixture exceedingly high. Thus, the 
blending technique is energy intensive and time consuming, and fre-
quently not entirely successful.

Because of the nature of the in situ precipitation, the particles are es-
sentially unagglomerated (as demonstrated by electron microscopy). The 
mechanism for their growth seems to involve simple homogeneous nucle-
ation. Since the particles are separated by polymer, they do not have the 
opportunity to coalesce. Figure 9.2 shows a typical transmission electron 
micrograph of such a silica-filled material.92 The particles are relatively 
monodisperse, most having diameters in the range of 100–200 Å. Similar 
results have been obtained with other particles formed by sol-gel 

(a) (b) (c)

Figure 9.1:
Permeability of a small molecule through PDMS as illustrated for the unfilled polymer 
(a), a nonpermeable filler decreasing the permeability of the PDMS by requiring a more 
tortuous route around the filler particles (b), and a filler that interacts so strongly with 
the PDMS that the PDMS segments close to the filler surface are so restricted that they 
are frequently called “bound rubber” (c).406–409
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reactions, including titania.42, 93–97 In some cases, the particles are formed 
in a separate step, and then blended into the polymer.98

In the in situ approach, the growth of the particles from the surface of 
a PDMS sample can be followed by NMR (figure 9.3) utilizing 1H and 29Si 
magic-angle spinning, with two-dimensional Fourier transform spin-
echo techniques.99 The 1H spin-spin (T2) relaxation time of the protons in 

Figure 9.2:
Transmission electron micrograph of a PDMS network containing 34.4 wt % in situ pre-
cipitated silica particles.92 The length of the bar corresponds to 1,000 Å.
Reproduced by permission of John Wiley and Sons.

A B

Figure 9.3:
1H NMR images of a SiO2-PDMS elastomeric sample obtained with a two-dimensional 
spin echo sequence having an echo time of 3.3 ms (portion A) and 22.7 ms (portion B).99 
The view is down the axis, and the resolution is 128 X by 128 pixels of 211 and 236 mm, 
respectively (in A), and 211 mm in both axes (in B).
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the PDMS is monitored as the chains become constrained by the growing 
silica-like material. For testing purposes, this composite was intentionally 
made to be inhomogeneous, with much larger amounts of silica on the 
surface. The dark rim at the edge of the sample indicates a reduced mobil-
ity of the network chains due to the presence of the silica. The evolution of 
the dark rim reveals the movement of the reaction front into the sample. 
This technique is nondestructive, but if the sample can be sacrificed, then 
slices can be further studied in a gradient column with regard to density, 
by electron microscopy100 or by x-ray or neutron scattering.

Sol-gel methods are quite general36, 42 in that a variety of precursor 
materials can be hydrolyzed, photolyzed, or thermolyzed to give reinforc-
ing, ceramic-type particles. Titanates, for example, can be hydrolyzed to 
titania, aluminates hydrolyzed to alumina, and metal carbonyls photo-
lyzed or thermolyzed to metals or metal oxides. Magnetic particles would 
be particularly interesting if they can be manipulated with an external 
magnetic field during the curing process (section 9.2.5). It is also possible 
to polymerize conducting polymers such as polyaniline within polysilox-
ane matrices.101, 102 The method can be used in a variety of polymers (or-
ganic as well as inorganic, nonelastomeric as well as elastomeric). Even 
nonpolar, purely hydrocarbon polymers can be reinforced, provided the 
sol-gel precursor has sufficient miscibility in the matrix.

A variety of catalysts work well in hydrolyses reactions, including acids, 
bases, and salts.103 Basic catalysts give precipitated phases that are gener-
ally well-defined particles, whereas the acidic catalysts give more poorly de-
fined, diffuse particles.4, 104 The solvent can be of considerable importance.105 
In some cases, particles are not formed at all, and bicontinuous (interpene-
trating) phases result.37, 106, 107 Another approach uses poly(allylamine hy-
drochloride) in a buffered solution to obtain what was called “bioinspired 
silica.”108

These sol-gel polymer reactions can be carried out in three ways.36, 42 
In the first, the polymer is cross linked and swelled with the organome-
tallic reagent, which is then hydrolyzed in situ. In the second, hydroxyl-
terminated chains are blended with enough of the organometallic 
compound (TEOS) to both end link the chains and generate silica by the 
hydrolysis reaction. Thus, curing and filling take place simultaneously, 
in a one-step procedure. In the third technique, TEOS is blended into a 
polymer that has end groups (e.g., vinyl units) that are unreactive under 
hydrolysis conditions. The silica is formed in the usual manner (Equa-
tion 9.1), and the mixture is dried. The resultant slurry of polymer and 
silica is stable and can be cross linked at a later time using any of the 
standard techniques, including peroxide cures, vinyl-silane coupling, or 
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irradiation. It is also possible to generate the catalyst and other reac-
tants in situ, to give composites of unusually high transparency.109

Interesting “aging” effects are frequently observed in these systems. If 
the precipitated particles are left in contact with the hydrolysis catalyst 
and water they appear to reorganize, so that their surfaces become better 
defined and their sizes become more uniform.35 The process seems analo-
gous to the “Ostwald ripening.”110

The reinforcing ability of such in situ generated particles has been 
amply demonstrated for a variety of deformations, including uniaxial ex-
tension (simple elongation), biaxial extension (compression), shear, and 
torsion.36, 42, 111, 112 In the case of uniaxial extension, the reduced stress [f  *] 
frequently increases by more than an order of magnitude, with the iso-
therms generally showing the upturns at high elongation, which is the 
signature of good reinforcement.113, 114 The left portion of figure 9.4 shows 
typical results, where α is the extension.115 As is generally the case in filled 
elastomers, there is irreversibility in the isotherms, which is thought to be 
due to irrecoverable sliding of the chains over the surfaces of the filler 
particles. The right portion of the figure documents the reinforcement ob-
served in biaxial extension. The maxima and minima exhibited by such 
results will be a challenge to those seeking a better molecular understand-
ing of filler reinforcement.
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Some fillers (e.g., TiO2) do give stress-strain isotherms that are revers-
ible, indicating interesting differences in surface chemistry, including in-
creased ability of the chains to slide along the particle surfaces.116 Figure 
9.5 illustrates such results.116 Nevertheless, the bonding of PDMS to silica, 
titania, or silica-titania mixed oxide particles is strong enough to suppress 
swelling of the polymer (figure 9.6) These results involve equilibrium 
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swelling measurements obtained on unfilled and filled PDMS elastomers 
to estimate the degree of adhesion between elastomer and filler parti-
cles.117–119 The results differ greatly from those for nonadhering fillers, in-
dicating good bonding between the two phases. Resistance to separation 
from the surface in such swelling tests does not contradict the chains 
having considerable mobility along the surface.

In situ–generated silica fillers improve creep resistance and compress-
ion set in cyclic deformation.120 The filled samples show very little com-
pression set (figure 9.7). Thermal stability also improves as reflected by 
higher decomposition temperatures. (figure 9.8)121 A possible mechanism 

3.0

2.5

2.0

1.5

1.0

0.5

0.0

St
or

ag
e 

M
od

ul
us

, M
Pa

806040200

Time, hours

0%

19.4%

12.4%

Figure 9.7:
Effect of cyclic stress on unfilled PDMS and PDMS elastomers filled with in situ precipi-
tated silica: (∆) unfilled, (⚫) 12.0 wt % silica, (O) 19.4 wt % silica.120

100

100 200 300 400 500 600 700 800

R
es

id
ue

 (W
t %

)

Comm-MO

T (°C)

Comm-AE

A

U

80

60

40

20

0

Figure 9.8:
Comparison of thermogravometric plots for PDMS networks that were unfilled (U), or 
contained either in situ precipitated silica (A) or commercial fume silica (COMM-MO and 
COMM-AE).121 The heating was under nitrogen.



[ 224 ]  The Polysiloxanes

for this improvement is increased capability of the in situ–produced silica 
to tie up hydroxyl chain ends that participate in the degradation reaction. 
Attempts at further improvements of silica fillers are continuing.122

A variety of techniques have been used to further characterize in situ–
filled elastomers.36, 42 Density measurements, for example, yield informa-
tion on the nature of the particles. Specifically, the densities of the 
ceramic-type particles are significantly less than that of silica itself, which 
implies the particles contain some unhydrolyzed alkoxy groups or voids, 
or both.

The low-temperature properties of some in situ–filled materials have 
been studied by the calorimetry techniques mentioned in chapter 1. Of 
particular interest is the way in which reinforcing particles affect the crys-
tallization of a polysiloxane, both in the undeformed state and at high 
elongations.123

Electron microscopy (both transmission and scanning) has been used 
to reveal (i) the nature of the precipitated phase (particulate or nonpar-
ticulate), (ii) the average particle size, if particulate, (iii) the distribution 
of particle sizes, (iv) the integrity of the particles, and (v) the degree of 
agglomeration of the particles.42

A number of studies using x-ray and neutron scattering124–127 have 
also been carried out on filled PDMS elastomers.36, 37 Although the re-
sults are generally consistent with those obtained by electron micros-
copy, there are some intriguing differences. Some fillers that appear to 
be particulate in electron microscopy appear to consist of a continuously 
interpenetrating phase by scattering measurements. Additional experi-
ments will certainly be forthcoming. Determining whether particle- 
induced network formation occurs is obviously a question of consider-
able importance.128

9.2.2 Glassy Particles Deformable into Ellipsoidal Shapes

It is possible to obtain reinforcement of a PDMS elastomer by polymeriz-
ing a monomer such as styrene to yield hard glassy domains within the 
elastomer.129, 130 Low concentrations of styrene give a low molecular 
weight polymer that acts more like a plasticizer than a reinforcing filler. 
At higher styrene concentrations, however, roughly spherical polystyrene 
(PS) particles are formed, leading to good reinforcement. The particles are 
relatively easy to extract from the elastomeric matrix, which implies min-
imal bonding exists between the components. A trifunctional R'Si(OC2H5)3 
where R' is an unsaturated group can be used to couple the particles to  
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the matrix. The R' groups on the particle surfaces participate in the po-
lymerization, thereby bonding the elastomer chains to the reinforcing 
particles. Alternatively, the R'Si(OC2H5)3 can be used as one of the end-
linking agents, to place unsaturated groups at the cross links. In any case, 
good reinforcement is observed for PS domains in the roughly spherical 
state. (figure 9.9)129

Ex situ techniques can also be used. The effects of particle dispersion on 
the melt state have been documented using nanocomposites containing 
PS homopolymers or PS-grafted silica.131 PS has also been grafted onto the 
cross links in a siloxane polymer132 and onto filler particles used to rein-
force an elastomer.133

The PS domains have the disadvantage of having a relatively low  
glass transition temperature (Tg ≈100°C)134–136 and in being totally amor-
phous. Above Tg they soften and presumably lose their reinforcing ability. 
For this reason, studies have been carried out using crystalline 
poly(diphenylsiloxane) as the reinforcing phase.137 Measurements on co-
polymers containing diphenylsiloxane blocks indicate it has a melting 
point (and thus a softening temperature) as high as 550°C.138

It is possible to convert the essentially spherical PS particles just de-
scribed into ellipsoids.42, 139–143 First, the PS-PDMS composite is raised to a 
temperature well above the Tg of PS; it is then deformed and cooled while in 
the stretched state. The particles are thereby deformed into ellipsoids, and 
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they retain this shape when cooled. Uniaxial deformation of the compos-
ite give prolate (needle-shaped) ellipsoids, and biaxial deformations give 
oblate (disc-shaped) ellipsoids.140, 144 Prolate particles can be thought of 
as a conceptual bridge between the roughly spherical particles used to 
reinforce elastomers and the long fibers frequently used for reinforce-
ment in thermoplastics and thermosets. Similarly, oblate particles can 
be considered analogues of the clay platelets used to reinforce a variety 
of polymers,145–150 but with dimensions and compositions that are 
controllable.

Ellipsoidal particles have been characterized using both scanning and 
transmission electron microscopy to determine their axial ratios and 
measure of the extent to which their axes were aligned in the stretch di-
rection. In these anisotropic materials, elongation moduli in the direction 
of the stretching are significantly larger than those of the untreated PS-
PDMS elastomer, whereas in the perpendicular direction they are signifi-
cantly lower (figure 9.10).140 Such differences are expected from the 
anisotropic nature of the filler particles.

In the case of nonspherical particles degree of orientations is also of 
considerable importance. The effects of orientation can be removed by dis-
solving away the host polymer and redispersing the particles isotropically 
in another, elastomer matrix. There have been simulations to better un-
derstand the mechanical properties of such composites.151–154
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There are endless variations of the in situ filler generation method. 
Polysiloxane can be made rod-like by cationic charges from ammonium 
groups.155 Epoxies have also been studied for coating applications.156 In 
some cases, the particles can give an elastomer “self-healing” proper-
ties.157 Particles have been introduced in emulsions,158 or in the curing 
agent to provide reinforcement as well as cross linking.159 In one set of 
studies, hyperbranched poly(ethoxysiloxane) was used to reinforce or-
ganic polymers, including poly(ethylene terephthalate), isotactic polypro-
pylene, and high-density polyethylene.160

9.2.3 Ex Situ and Modif ied Silicas

Separately prepared silica has long been used to reinforce polysiloxanes 
by blending them into the polymer prior to its cross linking. The tech-
nology of this ex situ method is well developed, including the charac-
terization of the resulting composites.128, 161–169 Mesoporous silica 
particles have also been used to improve reinforcement of polysiloxane 
elastomers.170 Theory and simulations have also been carried out on 
these materials.63, 171–173

One goal is to modify the surfaces of silica particles to improve 
bonding with PDMS, for example, with vinylethoxysilane174 or by si-
lanization.175 Similarly, tetraphenyl-modified fumed silica has been 
used to increase PDMS radiation resistance.176 Such materials can be 
difficult to characterize quantitatively. For example, in some cases 
fumed silica particles in PDMS formed secondary domain structures 
that made it difficult to characterize nanoparticle formation by tap-
ping-mode atomic force microscopy.177 Ultra small angle x-ray91 and 
neutron scattering178 are useful for characterization of such complex 
morphologies.

More novel structures have also been produced. Biogenic opaline silica 
short fibers modified with vinyltrimethoxysilane, for example, are good 
alternative reinforcing fillers for PDMS.179 Other materials in this cate-
gory include mesoporous silica,180 composites with polyindole,181 and self-
assembled structures such as molecularly ordered phenylene-bridged 
mesoporous organosilica nanofilaments.182 Also of interest are polysilox-
anes with quaternary ammonium salt biocidal functionality,183 conver-
sion of hyperbranched polyethoxysiloxane,184 and hybrid core-shell 
systems based on molecular silicasols.185 Perhaps the most novel struc-
tures are some recently developed enzyme-responsive snap-top covered 
silica nanocontainers.186
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NMR187–189 and positron annihilation lifetime spectroscopy188 have 
been used to characterize nanocomposites of this type.

9.2.4 Layered Fillers

Exfoliated layered particles such as the clays, mica, graphite, or graphite 
oxide give effective reinforcement of polymers at loading levels much 
smaller than in the case of spherical particles such as carbon black and 
silica.190–193 It should be recognized, however, that reinforcement is typi-
cally well below that expected for idealized sheet-like fillers.57 Graphite-
oxide reinforced PDMS, for example, gives a 71% enhancement of young’s 
modulus at 3 wt % loading.194 This value, however, is just 8% that expected 
for flat sheets. The shortfall is attributed to crumpling of the sheets.57Other 
properties can also be substantially improved, including processability, 
resistance to solvents, and reduced permeability and flammability.190–192, 
195–202 The viscoelastic properties of graphite oxide suspensions in PDMS 
have also been studied.203

The layered silicate most often used to improve the properties of PDMS 
is montmorillonite.119, 204–225 Improvements have also been reported upon 
the introduction of graphite,226 graphite oxide,194 mica,227, 228 fluoromica,210 
hectorite,207 fluorohectorite,210 laponite,210 wollastonite,229 perovskite,230 
sepiolite,231 and titanium-niobium oxide.232, 233 Kaolin234 and exfoliated 
layered double hydroxides235 have also been used in PDMS nanocompos-
ites. In some cases, diphenylsiloxane-clay hybrids have been used to rein-
force polyethylene.236

Segmental motions of poly(methylphenylsiloxane) chains confined in in-
tercalated nanocomposites have been studied by quasielastic neutron scat-
tering and, surprisingly, were found to be faster than in the bulk polymer.237

Computations have been carried out to better understand the struc-
tures and properties of these types of nanocomposites.238–243 One subject 
of particular interest is the observed enhanced gas transport performance 
of PDMS nanocomposite membranes containing layered silicates,244 which 
is not expected based on studies of magnetically alligned particles disuc-
ssed in the next section. Clays have also been used to improve the proper-
ties of silsesquioxane polymers.245, 246

9.2.5 Magnetic and Metallic Particles

Incorporating reinforcing particles that respond to a magnetic field is  
important with regard to aligning particles to improve mechanical  
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properties anisotropically.42, 102, 247–249 Considerable anisotropy in struc-
ture and mechanical properties can be obtained.250 Specifically, the rein-
forcement of PDMS was found to be significantly higher in the direction 
parallel to the magnetic lines of force (figure 9.11). Sterically stabilized 
single-particle complexes with a specifically tailored size have been re-
ported in magnetite-PDMS systems.251

Making a polysiloxane electrically conductive is best carried out using 
anisometric particles such as films and fibers, because of their low values 
of the percolation threshold for conducting pathways.57 Nonetheless, 
roughly spherical particles of carbon black have also been used for this 
purpose.252 The use of layer-like particles is illustrated by functionalized 
graphene sheets,253 while needle shapes are illustrated by unmodified or 
modified carbon nanotubes or nanofibers.254–263 In the case of the carbon 
nanotubes, CH-π interactions between the methyl groups in the PDMS 
and the nanotube surface can greatly improve dispersion.264 The same is 
presumably true for carbon nanofiber interconnected porous network 
structures.265

Magnetic properties have also been induced into polysiloxanes by 
incorporation of particles of a ferrite,250, 266, 267 iron,268, 269 or magne-
tite.270, 271 These materials can show large field-induced elongations,268 
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and could also find applications as elastomeric bearings and vibration 
absorbers.269

The types of particles seem endless and new applications appear regu-
larly. Iron particles have been used to modify the dielectric properties of 
polyoxides272 and alumina particles to increase thermal conductivity.273 
PDMS composites with Al2O3-NbC have also been prepared.274 Also, gold 
nanoparticles can serve as catalysts for the polymerization of polysilox-
anes into nanowires, filaments, and tubes.275 Another catalytic applica-
tion involves gold nanoparticles mimicking the catalytic activity of a 
polysiloxane-synthesizing enzyme.276 One novel aspect of such gold-
polysiloxane nanocomposites is the ability to switch between several 
colors by swelling.277 It is also possible to form striped patterns on a gold 
film deposited on a stretched polysiloxane film,278 and silica-coated gold 
particles have also been used to make polysiloxane films with unusual 
optical properties.279

9.2.6 Polyhedral Oligomeric Silsesquioxanes

Polyhedral silsesquioxanes fillers are cage-like silicon-oxygen structures, 
and have been called the smallest possible silica particles.280–285 The most 
common structure has eight silicon atoms, each carrying an organic 
group. The particles on which none of the groups are functionally reac-
tive can be simply blended into elastomers such as PDMS using mixing or 
compounding techniques. In this case, the inert groups are chosen to im-
prove miscibility with the elastomeric host matrix. Polyhedral oligomeric 
silsesquioxanes (POSS) molecules having one reactive functional group 
can be attached to a polymer as side chains.286 Those with two reactive 
groups can be incorporated into polymer backbones by copolymeriza-
tion, and those with more than two can be used for forming cross links. 
As opposed to particulate fillers where interfacial bonding is of second-
ary importance,287, 288 bonding polyhedral silsesquioxanes to the elasto-
meric network is critical to effective reinforcement. Bonding is not the 
source of reinforcement, but rather it aids in dispersion of the cage 
structures.285

POSS particles have been extensively used to reinforce polysilox-
anes.285, 289–291 In some cases, the surfaces of the nanoparticles were made 
strongly hydrophobic by fluorination.292 C60 fullerene particles have also 
been used to improve the mechanical properties of PDMS.293 The polymer 
had been functionalized and the particles were either monofunctional-
ized or multifunctionalized with complementary groups.
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9.2.7 Nanotubes

Carbon nanotubes are also of considerable interest with regard to 
both reinforcement and possible increases in electrical conductiv-
ity.280, 281, 283, 284, 294–306 If the goal is to reduce the percolation thresh-
old for electrical conductivity, aggregation can be helpful if it occurs 
in a random way to create fractal structures.57 There is considerable 
interest in characterizing the flexibility of these nanotube structures, 
in managing their tendencies to aggregate, and in maximizing their 
miscibility with inorganic as well as organic polymers. Although an 
enormous effort has been expended on surface functionalization to 
improve coupling between the filler and the matrix, it is not clear that 
functionalization does more than improve dispersion.57

9.2.8 Dual Fillers

There can be a considerable advantage to using a combination of fillers of 
different types, such as particles and layered sheets. One frequently ob-
tains a synergistic effect in that the improvements in properties obtained 
can be larger than expected from simple additivity. In addition, the first 
filler may have a solubilizing effect, making incorporation of the second 
one easier. Relatively little has been done in this regard.307–310

9.2.9 Porous Fillers

Some fillers such as zeolites are sufficiently porous to harbor monomers, 
which can then be polymerized. This approach threads the chains through 
the cavities, with unusually intimate interactions between the reinforcing 
phase and the host elastomeric matrix (figure 9.12).295, 311, 312 Good rein-
forcement is observed. Because of the constraints imposed by the cavity 
walls, these confined polymers frequently show no glass transition 

Figure 9.12:
Polymer chains being threaded through a porous inorganic material such as a zeolite by 
polymerizing monomer that had been absorbed into one of the channels or cavities.
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temperature or melting point.152 PDMS chains have also been threaded 
through cyclodextrins, to form pseudo-rotaxanes.313

9.2.10 Fillers with Controlled Interfaces

By choosing the appropriate chemical structures chains that span filler 
particles in a PDMS-based composite can be designed so that they are du-
rable, irreversibly breakable, or breakable reversibly.287, 288, 314, 315

9.2.11 Silicif ication and Biosilicif ication

There has been some interest in generating silica-like particles using 
templates, as occurs naturally in biosilicification processes.108, 316–325 
Various particle shapes have been obtained. Platelet forms are of par-
ticular interest with regard to their ability to reinforce and decrease 
permeability.

9.2.12 Miscellaneous Fillers

There are a variety of miscellaneous fillers that are of interest for reinforc-
ing elastomers such as PDMS. Examples are lignocellulose,326 ground-up 
silica xerogels,327 carbon-coated silica,328 nickel-coated graphite,329 and 
functionalized silica particles.330–332 Even cross-linked PDMS particles 
(“silicone powders”) have been used,333–335 as well as functionalized poly-
siloxane nanospheres.336 Polystyrene/PDMS core-shell particles have 
been used for the modification of mechanical properties.337 Trimethylsi-
loxy silicates338 and glass fibers339 have also been used for this purpose. In 
some cases, nanoparticles have been generated by phase separation, for 
example, in PDMS containing epoxy resins and poly(methyl dmethacry-
late),340 and polyamides or polyamideimides.341

Additional novel particles, including nylon 66,342 alumina,343 gold,344 
garnet,345 diamond,346 graphite,347 polyaniline,348 and boron nitride 
nanosheets,349 and nanoparticles of low molecular weight borate esters, 
have been introduced to increase ionic conductivities.350 Boron-doped 
PDMS has been used as scintillators for thermal neutron detection.351 
Nanowires of ZnO have been inserted into PDMS to give tunable, flexible 
antireflection layers,352 and ZnO has also been introduced into such 
polymers as quantum dots.353, 354 Similarly, color-tunable luminescent 
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materials have been based on functionalized PDMS and lanthanide 
ions,355 or CdSe quantum dots.356

Other unusual additives include oxetanes,357 vinylic macromono-
mers,358 silicon carbide,359 superconductive carbon blacks,360 silver-coated 
fly ash,361 metal oxides,362 Tb3+ for green emission,363 antibacterial 
agents,364 and organic-inorganic hybrid copolymer fibers.365 In an inter-
esting reversal, transition element acetylacetonate salts were decomposed 
in a PDMS matrix to give membranes with catalytic activity.366

9.2.13 Unusual Shapes

Porous materials, including aerogels and xerogels,30, 31 can be synthesized 
in cylindrical, hexagonal, or monoclinic367 and hierarchically ordered 
structures.368, 369 Methods have been developed to prepare hybrid silica-
silicone PDMS nanofibers370 and nanocapsules that are hollow and have 
controlled diameters.371–373 Some polysiloxane capsules can be deformed 
by external electric fields.374 PDMS sheets bombarded with gallium ions 
form skins that are under strains not experienced by the underlying poly-
mer.375 This strain causes a wrinkling into wavy or hierarchical patterns. 
Gold films can also be used for this purpose.278 Such materials could be 
useful in microfluidic devices, for example, for mixing and stretching pro-
teins and polynucleotides.

An origami type of structure can be obtained by placing a droplet of a 
liquid such as water on a sheet of PDMS placed on a superhydrophobic sur-
face.376 Capillary forces then wrap the PDMS sheet around the droplet. 
Square sheets of PDMS envelope the droplet in a cylindrical shape, while 
triangular sheets seal it into the shape of a tetrahedral pyramid.

Replication techniques are available for transforming complex silica 
shapes into the corresponding shapes of various polymers.377 The process 
can also be extended in the opposite direction, by converting the silica 
into silicon. Specifically, a low-temperature reduction process has been de-
veloped to convert three-dimensional nanostructured silica micro-assem-
blies into microporous nanocrystalline silicon replicas.378 Such materials 
could be useful in a variety of applications, including sensors and biomedi-
cal devices.

9.2.14 Simulations on Fillers

Monte Carlo computer simulations have been carried out on a variety of 
filled elastomers, including PDMS,379–382 in an attempt to obtain a better 
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molecular interpretation of how such dispersed phases reinforce elasto-
mers. The approach taken enabled estimation of the effect of the excluded 
volume of the filler particles on the network chains and on the elastic 
properties of the networks. In the first step, distribution functions for the 
end-to-end vectors of the chains were obtained by applying Monte Carlo 
methods to rotational isomeric state representations of the chains.383 
Conformations of chains that overlapped with any filler particle during 
the simulation were rejected. The resulting perturbed distributions were 
then used in the three-chain elasticity model384 to obtain the desired 
stress-strain isotherms in elongation.

In one application, a filled PDMS network was modeled as a composite 
of cross-linked polymer chains and spherical filler particles arranged on a 
cubic lattice.385 The filler particles increase the non-Gaussian behavior of 
the chains and increase the moduli. It is interesting to note that compos-
ites with such structural regularity have actually been produced386 and 
mechanical properties have been reported.387, 388

In a subsequent study, the reinforcing particles were randomly dis-
tributed within the PDMS matrix.382 One effect of the filler was to in-
crease the end-to-end separation of the chains. These results on the 
chain-length distributions are in agreement with some subsequent neu-
tron scattering experiments on silicate-filled PDMS.389 The polymers 
contained silica particles that were surface treated to make them inert to 
the polymer chains, as was implicitly assumed in the simulations. These 
experimental results also indicated chain extension when the particles 
were relatively small, and chain compression when they were relatively 
large.

Two issues need to be addressed by simulations regarding the molecu-
lar origin of reinfocement: increases in modulus with loading and upturns 
in the modulus with increasing deformation. Results are typically ex-
pressed as the reduced-nominal or engineering stress as a function of de-
formation. The area under such curves up to the rupture point then gives 
the energy of rupture, which is the standard measure of the toughness of 
a material.42 The stress-strain isotherms in elongation380 from simulated 
distributions showed substantial increases in modulus that increased 
with increase in filler loading, as expected. Additional increases would be 
expected by taking into account other mechanisms for reinforcement 
such as physisorption, chemisorption, and so on.

Simulations have also been carried out on ellipsoidal particles such as 
the polystyrene prolate and oblate ellipsoids. For example, oriented pro-
late particles390 showed that the anisotropy causes the modulus in the lon-
gitudinal direction to be significantly higher in the transverse direction. 
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These simulated results are in at least qualitative agreement with the ex-
perimental differences in longitudinal and transverse moduli.140

The silica or carbon black particles used to reinforce commercial mate-
rials are seldom completely dispersed,57, 88, 89, 391–393 as is assumed in the 
simulations described. The primary particles are generally aggregated. 
These aggregates are frequently clustered into less stable arrangements 
called agglomerates.91

Simulations are being carried out on more ordered structures.394 The 
shapes of the aggregates include linear, globular, branched, star-shaped, 
and fractal. It is well known in the industry that such structures are im-
portant in maximizing the reinforcement, as evidenced by the fact that 
being too persistent in removing such aggregates and agglomerates in 
blending procedures gives materials with less than optimal mechanical 
properties.88, 89, 391–393 Simulations should provide guidance on optimizing 
the degree of particle dispersion.

9.3 POLYMER-MODIFIED CERAMICS

If hydrolysis in silane precursor-polymer systems is carried out using 
relatively large amounts of the silane, the silica generated can become 
the continuous phase, with elastomeric polysiloxane dispersed in it.13–15, 
395–402 The resultant composite is a polymer-modified glass or ceramic, 
frequently of very good transparency. Although thermal stability is in-
ferior to that of the neat ceramic component, there are many applica-
tions for ceramic-type materials where reduced thermal stability is not 
a concern.

As might be expected, the properties of polymer-toughened ceramic 
materials depend greatly on the relative amounts of the two phases. 
Properties of particular interest are modulus, impact resistance, ulti-
mate strength, maximum extensibility, viscoelastic responses, and 
transparency. The hardness of such a composite, for example, can be 
varied by control of the molar ratio of alkyl R groups to Si atoms, as il-
lustrated for PDMS in figure 9.13.397 Low values of R/Si yield a brittle 
ceramic, and high values give a relatively hard elastomer. The most in-
teresting range, R/Si ≅ 1, can yield a tough ceramic of increased impact 
resistance.

Figure 9.14 illustrates some improvement in impact strength in such 
composites.403 Specifically, impact strengths of some PDMS-SiO2 samples 
were determined by the Charpy pendulum test and by the falling-weight 
test.403 The samples investigated were PDMS-modified SiO2 and SiO2/TiO2 
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glasses with PDMS contents ranging from 0 to 65 wt %. Only samples 
with relatively high ceramic content were sufficiently brittle to be studied 
in this manner. The larger the amount of PDMS used, the higher the 
impact strength.

For PDMS-modified SiO2 glasses, structural analysis shows that this 
hybrid material exhibits localized phase separation of the PDMS compo-
nent, even though OH-terminated PDMS can be successfully incorpo-
rated into the SiO2 network by chemical bonding. The PDMS component 

80

60

40

D
 H

ar
dn

es
s

20

0
0.8 1.0

R/Si

1.2

Elastometric

Tough

Brittle

1.4

Figure 9.13:
The hardness of a silica-PDMS composite as a function of the molar ratio of alkyl groups 
to silicon atoms.397

Reproduced by permission of Springer Verlag.

10

8

6

Im
pa

ct
 s

tr
en

gt
h,

 K
J 

m
–2

Im
pact strength, N

 m
m

Wt % PDMS

a

b

4

2

0
0 10 20 30 40

0

100

200

300

400

500

Figure 9.14:
Dependence of two estimates on the impact strength on the amount of PDMS in PDMS-
modified SiO2 glasses.403 The impact strengths were obtained from: (a) the Charpy pendu-
lum impact test and (b) the falling-weight impact test.



C o m p o s i t e s  [ 237 ]

can behave as an elastomeric phase because the glass transition tem-
perature of PDMS is far below room temperature.134–136 When the mate-
rial is subjected to an impact test, the PDMS component absorbs energy 
by motion of the PDMS chains, thus ameliorating the growth of cracks 
and fracture. Therefore, considerable toughening of the glass can be 
achieved by increasing the amount of PDMS. The impact resistance was 
also observed to increase with increasing PDMS molecular weight, pos-
sibly due to an increase in the phase separation that leads to the energy-
absorbing domains403 as was found by introducing PDMS domains into a 
polyamide.404

For composites having relatively low PDMS content, microscopy of 
fracture typically shows smooth fracture surfaces,405 with little evidence 
of effective resistance to either initiation or propagation of cracks. In con-
trast, samples with high PDMS contents had fracture surfaces showing 
some degree of “whitening” or shearing,403 implying a ductile, energy- 
absorbing response to the impacts, with increased resistance to crack 
propagation.
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CHAP TER 10

Applications

10.1 MEDICAL

Numerous medical applications have been developed for siloxane poly-
mers.1–4 Prostheses, artificial organs, objects for facial reconstruction, vit-
reous substitutes in the eyes, tubing and catheters, for example, take 
advantage of the inertness, stability, and pliability of polysiloxanes. Arti-
ficial skin, contact lenses, and drug delivery systems utilize their high per-
meability as well. Such biomedical applications have led to extensive 
biocompatability studies,5–6 particularly on the interactions of polysilox-
anes with proteins.7 There has been considerable interest in modifying 
these materials to improve their suitability for biomedical applications in 
general.8–9 Advances seem to be coming particularly rapidly in the area of 
high-tech drug-delivery systems.10–11 Figure 10.1 shows the range of diam-
eters of Silastic medical-grade siloxane tubing available for medical ap-
plications. The smallest tubing has an internal diameter of only 0.012 
inches (0.031 cm) and an outer diameter of only 0.025 inches (0.064 cm).

Such materials must first be extensively tested (sensitization of skin, 
tissue cell culture compatibility, implant compatibility). There has been 
considerable controversy, for example, over the safety of using polysilox-
anes in breast implants.12–13 The major concern was “bleeding” of low mo-
lecular polysiloxanes out of the gels into the chest cavity, followed by 
transport to other parts of the body. The extent to which “bleeding” oc-
curred and its possible systemic effects on the body were argued vigor-
ously in the media and in the courts, and led to restrictions on the use of 
polysiloxanes.

In the case of controlled drug-delivery systems, the goal is to have the drug 
released at a relatively constant rate (zero-order kinetics) at a concentration 
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within the therapeutic range. It is obviously important to minimize the 
amount of time the concentration is in the low, ineffective range, and to elim-
inate completely the time it is in the high, toxic range (figure 10.2).  
Figure 10.3 illustrates the use of polysiloxanes in such drug-delivery systems. 
The goal mentioned is approached by placing the drug inside a siloxane elas-
tomeric capsule, which is then implanted in an appropriate location in the 
body. The drug within the capsule can be in the free state, in a fluid suspen-
sion, or mixed or dissolved into an elastomeric matrix. Release rates for drugs 
that are much more hydrophilic than the polysiloxanes (e.g., melatonin and 
sulfanilamide) are frequently relatively slow. Rates can be increased by incor-
porating solvents, channeling agents, or fillers in the capsule.

10.2 NONMEDICAL

Typical nonmedical applications include high-performance elastomers, 
membranes, electrical insulators, water repellents, antifoaming agents, 

Figure 10.1:
Siloxane polymer used in tubing and catheters for medical applications. The photograph 
was provided by the Dow Corning Corporation of Midland, MI.
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mold-release agents, adhesives, protective coatings,14 release control agents 
for agricultural chemicals, encapsulation media, mold-making materials, 
coatings, layers in high-tech laminates, and hydraulic, heat-transfer, and 
dielectric fluids.1, 3, 15–16 These applications are based on the same properties 
of polysiloxanes just mentioned and also their ability to modify surfaces 
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Figure 10.2:
Drug concentrations in the body as a function of time. The dashed line shows the un-
controlled dissolution of a pill, with two regions so low that the concentration would be 
ineffective and another region high enough to be toxic. The solid line shows the goal of 
controlled delivery, specifically a relatively constant delivery rate in the therapeutic range 
for an extended period of time.

Figure 10.3:
A controlled release drug-delivery system that utilizes both siloxane elastomers and 
fluids. The photograph was provided by the Dow Corning Corporation of Midland, MI.
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and interfaces (e.g., as water repellents, antifoaming agents, and mold-re-
lease agents). In some cases the polysiloxane is blended into a material to 
improve its mechanical properties (e.g., its impact strength). For such ap-
plications, finely divided cross-linked powders are available commer-
cially.17–18 Two additional examples are the uses of polysiloxanes in 
polymer-electrolyte complexes 19 and in microlithographic applications. 20

Figure 10.4 shows a typical nonmedical application of a siloxane poly-
mer. In this case, a liquid, UV-curable polysiloxane is being used to protect 
a printed circuit board. The polymer being used was specifically chosen for 
its low viscosity, moisture resistance, and easy repairability. Also, some 
such materials can be treated so that thin spots in the coating are readily 
apparent. Although dip coating is illustrated in the figure, flow coating 
and spray coating can also be used.

One of the most impressive applications of polysiloxanes, particularly 
in the arts, is their use in making molds of intricate surfaces (figure 10.5). 
In this case, the surface to be copied was vertical and nonmovable, so a 

Figure 10.4:
An electronic circuit board being given a protective polysiloxane coating. The photograph 
was provided by the Dow Corning Corporation of Midland, MI.
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“nonslumping” end-linkable paste had to be used rather than a liquid. 
After the surface was coated, it was cured to give a remarkably faithful 
reproduction that was easily removable from the original surface.

In the final example, a polysiloxane appears as an interlayer in the 
types of plastic and glass laminates used for increased safety in wind-
shields and canopies in aircraft. The flexibility and thermal stability of 
these polymers are great advantages in the case of high-performance air-
craft, which can experience wide variations in temperature. In this appli-
cation, a polysiloxane is chosen to give the highest transparency and good 
adhesion to the plastic or glass outer layers. The excellent transparency of 
such composites is readily seen in the samples displayed in figure 10.6.

Polysiloxanes are the materials of choice in the new “soft-lithography” 
techniques.21–25  Figure 10.7 briefly outlines the method. In the first step, 
linear (liquid) polydimethylsiloxane (PDMS) is poured over the surface of 
the master to be reproduced; it is then cross linked and peeled away from 
the master surface. The PDMS surface containing the pattern is then 
coated with a hydrophobic alkane thiol, and the pattern is transferred to 
a gold surface (to which the thiol strongly binds). The pattern placed onto 
the gold surface can then be developed using a variety of techniques, in-
cluding washing with a hydrophilic thiol to coat those parts of the sur-
face not covered by the hydrophobic thiol. The advantages of PDMS are (i) 
high fluidity (which is required to make good replicas of the  

Figure 10.5:
High-transparency polysiloxane elastomer used as a stress-relieving interlayer in the 
type of safety glass or plastic used in windshields and canopies. The photograph was pro-
vided by the Dow Corning Corporation of Midland, MI.
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master), (ii) ease of cross linking at ambient temperatures (to make the 
features of the stamp permanent), (iii) superb elasticity and robustness 
(for removing the PDMS stamp and using it in microcontact printing), 
and (iv) excellent stability (for long-term storage of patterns).

Mention should be made of the use of polysiloxanes in the area of mi-
crofluidics. 22,26 Devices of this type have channels or capillaries with di-
mensions 10–10,000 µm, and their preparation is relatively straightforward 
with PDMS, using the soft-lithography techniques just described to make 
the required molds.

Figure 10.6:
A polysiloxane Room-Temperature Vulcanizate (RTV) being used to make a mold of an 
intricately carved surface. The photograph was provided by the Dow Corning Corporation 
of Midland, MI.

PDMS PDMS

Si

Au

PDMS PDMS

Figure 10.7:
Steps in soft lithography. The PDMS in the beginning sketch is first cross linked, then 
removed, and then coated with a thiol that transfers the original pattern to a gold layer.
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10.3 CONCLUSIONS AND OUTLOOK

As documented in this review, the polysiloxanes have been of great inter-
est and importance for a variety of reasons. The chains themselves have 
unusual structural features and flexibility and mobility unmatched by 
other polymer molecules. As a result, polysiloxanes have extraordinarily 
high permeabilities, very low viscosities, unusual surface properties, un-
expected mesophases, and useful properties over an astonishingly wide 
range of temperatures. The fact that these novel properties are not well 
understood has attracted the attention of people doing analytical theory 
or computer simulations.

Networks produced from polysiloxane chains are also unique, because 
of the specific reactions that can be used to end link them into high- 
performance elastomeric materials of known network structures. Rein-
forcing these polysiloxane elastomers also provides some unusual opportu-
nities in that they are compatible with fillers ranging from the commercially 
important silicas to new materials such as in situ–generated ceramic par-
ticles, ellipsoidal particles, clays and other layered materials, polysilsesqui-
oxane molecular cubes, porous materials, and nanotubes. All indications 
are that the polysiloxanes will maintain their fascination to those doing 
basic research, and there seems to be no limit to the areas in which these 
materials are finding intriguing applications.
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Benzoxazines, 45
Biocompatability, 262
Biomedical, 1, 18–19, 121, 233, 262, 

268
Biosilicification, 232
Birefringence, 39, 68, 148, 167, 172
Blend, 2, 36, 44–45, 71, 127, 131
Bound rubber, 70, 218
Breast implant, 70, 262
Brillouin scattering, 72

Carbon black, superconductive, 233
Carbon dioxide, super critical, 71, 99
Carbosiloxane, 38, 87
Cellulose acetate, 15, 159
Chain statistics; see also Conformation 

characteristic ratio, 82–86, 88
conformation, 4, 83, 93
freely rotating, 88
Gaussian, 11, 42, 68, 83–84, 155, 

161, 168, 172, 178
non-Gaussian, 68, 155, 161, 168, 

172, 178
theta temperature, 71

Characterization techniques 
atomic force microscopy (AFM), 36, 

69, 122, 127, 130, 227
brillouin scattering, 72
chemical force microscopy, 127

differential scanning calorimetry 
(DSC), 18, 99, 173, 175

differential thermal analysis (DTA), 
18

dynamic light scattering (DLS), 71, 
99, 173

fluorescence correlation 
spectroscopy, 95

gas chromatography, 18, 95
gel permeation chromatography 

(GPC), 18, 84
infrared spectroscopy (IR), 69, 127
inverse gas chromatography, 95
liquid chromatography, 18
mass spectrometry, 18, 98
neutron scattering, 16, 43, 71, 84, 

94, 162, 173, 220, 228, 234
nuclear magnetic resonance (NMR), 

17, 36, 69–70, 122, 203, 217
osmometry, 18
photoluminescence spectroscopy, 69
positron annihilation spectroscopy, 

69
raman spectroscopy, 69, 99
scanning electron microscopy (SEM), 

122, 224, 226
scanning tunneling microscopy 

(STM), 69
single-molecule spectroscopy, 218
small-angle scattering, 71, 217
spectroscopic ellipsometry, 69
static light scattering (SLS), 71, 99
thermogravimetric analysis (TGA), 

18
transmission electron microscopy 

(TEM), 224, 226

INDE X
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Characterization (continued)
ultra small angle x-ray scattering 

(USAXS), 227
ultracentrifugation, 18
ultrasonic, 72, 84, 174
ultrasound pulse-propagation, 72
ultraviolet radiation (UV), 16
UV spectroscopy, 17
viscometry, 18
wide-angle scattering (WAS), 82
X-ray diffraction (XRD), 36, 40
X-ray photoelectron spectroscopy, 

122, 127, 130
Charpy pendulum, 235–236
Chromatography 

gas, 18, 95
gel permeation, 18, 84
inverse gas, 95
liquid, 18

Chromophores, 32, 87
Click chemistry, 10, 144
Colorant, 15
Condensation, 15, 99, 151, 157
Conformation; see also Chain statistis 

bond length, 81, 85
cis, 71, 166
conformational energy, 86, 93
isomer, 82, 84–85, 177–178, 234
side group, 1–3, 13, 34, 39, 85–87, 

89, 91, 98, 119, 156, 203
trans, 2, 4, 14, 81–82, 84–85, 93

Conformer 
gauche, 82–84, 86, 93
trans, 82, 84, 93

Constrained-junction theory, 147
Copolymer 

amphiphilic block, 204
categories of, 2
comonomer, 203
grafting, 97, 123, 129, 205
poly(dimethylsiloxane) (PDMS), 10, 95
random, 13, 127, 203

Corning Glass Company, 2
Cross linking 

agent, 15
characterization, 16–19
degree of, 19, 39, 70–71, 129–130, 

149, 218
network, 144
procedure, 16, 40

reinforcement, 218, 227
techniques, 144

Crystal, Crystallization 
melting temperature, Tm, 38, 144
strain-induced, 68, 88, 100,  

147–148, 155, 164, 168–169
Curing, 14–16, 173, 220, 227
Cyclic oligomer, 10–11, 177, 203
Cyclic siloxane, 12, 32
Cyclic, trapping, 177
Cyclization, 41–42, 83–86

Damping, 158
Dangling chain, 130, 155–158
Degradation, 9, 19, 98–99, 224
Dendrimer, 35, 120, 131, 160
Dielectric constant, 97
Dielectric fluid, 264
Diethyl zinc, 2
Differential scanning calorimetry 

(DSC), 18, 99, 173, 175
Differential thermal analysis (DTA), 18
Diluent, 159–160
Dimethyldichlorosilane, 10
Dimethylsiloxane (DMS), 92
Diphenylsiloxane (DPS), 92
Dipole moment, 43, 83–84, 88, 97
Dispersion coating, 17
Dow Cornig Corporation, 263–268
Drug-delivery, 128, 262–264
Dynamic flexibility, 14, 93–94
Dynamic light scattering (DLS), 71, 99, 

173

Elastomer 
liquid-crystalline, 35, 38, 151
poly(dimethylsiloxane) (PDMS), 13, 

127, 164–165
siloxane, 19, 264
techniques, 14–16
technology, 14
thermoplastic, 10, 17

Electrospinning, 175
Ellipsometry, 69
Emulsion 

double, 13
microemulsion, 122, 126
miniemulsion, 175
PDMS oil/water, 126
silicone oil, 121
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End blocker, 12, 34
End-functionalized, 16, 34
End-linking, 15, 161–162
Entropic destabilization, 84
Entropy, 11, 85, 88–89
Environmental impact, 97
Enzyme, 10, 128–129, 229–230
Epoxy 

resin, 46, 232
terminal group, 35

Equation-of-state, 99
Equilibrium flexibility, 88–89, 93
Ex situ fillers, 218, 225, 227
Excess volume, 99–101

Filler 
carbon black, 228–229, 233, 235
conductive, 229
dual, 231
ellipsoidal particle, 226, 234, 268
ex situ, 218, 225, 227
extending, 14–15
in situ sol-gel, 218–224, 226–227
layered, 228, 231, 268
luminescent materials, 232
magnetic, 217, 220, 228–229
miscellaneous, 232
nanoparticle, 218, 227, 230, 232
nanotube, 229, 231, 268
nonreinforcing, 15
origami, 233
polyhedral silsesquioxane, 230
porous, 229, 231, 233, 268
reinforcing, 14–15, 19, 70, 224, 227
silica, 216–225, 227–230, 232–236
simulation of filled elastomers, 233
titania, 219–220, 222

Fixman-Alben distribution, 168
Flory-Huggins interaction, 95
Fluorescence, 16, 35, 69, 72, 95, 218
Fluorescence correlation spectroscopy, 

95
Fluorinated acrylate, 159
Fluororubber, 45
Fluorosiloxane, 33, 100

Gaussian distribution, 11, 83–84, 155, 
168

Gel 
aerogel, 12, 144, 233

gelation, 144, 205
hydrogel, 101, 121, 144
polysiloxane, 71, 101, 119
silica-PDMS, 98
slide ring, 41
stimuli-responsive, 144
thermoporometry, 71
viscoelastic magnetic, 144
xerogel, 128, 232–233

General Electric Company, 3
Glass transition temperature, Tg, 14, 

43–44, 68, 71, 84, 89, 92, 94, 
217, 225, 237

Grafting 
copolymer, 205
poly(dimethylsiloxane) (PDMS), 129
techniques, 123

Grignard reaction, 2–3, 9, 17

Hexaethyldisiloxane, 97
Hexamethylcyclotrisiloxane, 10, 97
Hexamethyldisiloxane, 97
Homopolymer, 2, 32, 87, 225
Hydrophilicity, 119–120
Hydrophobicity, 119–120
Hyperbranched, 35, 227

Infrared spectroscopy (IR), 69, 127
Interfacial structure, 72
Interpenetrating networks (IPNs), 

157–158, 166, 203, 205

Kipping, Frederic, 2

Laser irradiation, 16
Liquid crystal 

cholesteric, 40
clearing temperature, 36
elastomer, 35–41, 151
isotropization temperature, 37–38
poly(dimethylsiloxane) (PDMS), 96
polysiloxane, 40, 72, 87, 92–93

Lithography, 122, 131, 266–267
Luminescent, 232

Maleic anhydride, 125, 204
Mass spectrometry, 18, 98
Mechanical properties 

biaxial, 149, 169–170, 221, 226
creep, 172, 175, 223
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Mechanical (continued)
fracture energy, 148, 176
impact strength, 170, 235–236, 265
modulus, 19, 82, 146, 148–150,  

152–155, 158, 166–172,  
176–177, 223, 228, 234–235

pure shear, 170
reduced stress, 149, 166, 221
shear modulus, 153, 170
simple shear, 170
torsion, 149, 164, 169, 171, 221
ultimate property, 154–157,  

161–164, 176
viscoelastic, 144, 147, 153, 171–172, 

228, 235
Medical, 262–263
Mellon Institute, 3
Mesoporous, 12, 70, 175, 227
Microfluidic device, 45, 122–123, 131, 

233
Micropatterned material, 45
Microscopy 

atomic force (AFM), 36, 69, 122, 127, 
130, 227

chemical force (CFM), 127
scanning electron (SEM), 122, 224, 

226
scanning tunneling (STM), 69
transmission electron (TEM), 224, 

226
Miscibility, 100, 220, 230–231
Molecular Weight, fractional 

precipitation, 18
Molecular weight, gradient elution, 18
Monodisperse, 161, 217–218
Monomer, 9–11, 13, 125, 231
Monte Carlo 

method, 41, 177, 234
simulation, 168, 233

Mooney-Rivlin 
constant, 147
isotherm, 167
ratio, 152
semi-empirical formula, 149

Mullins effect, 149

Nanofilament, 129, 131, 227
Network 

bimodal, 70–71, 162–176

entanglement, 72, 94, 145, 152, 154, 
166, 205

interpenetrating, 157–158, 203, 205
junction functionality, 151–152
model, 130, 149–155, 157, 159, 166, 

168
multimodal, 160
olympic, 179
phantom, 154
topology, 70, 145, 148
trimodal, 70–71, 173, 175–176
unimodal, 70–71, 150, 161–166, 

169–177
weakest-link, 161, 163

Neutron scattering, 16, 43, 71, 84, 94, 
162, 173, 220, 228, 234

Nomenclature, M, D, T, Q, 3–4
Nonsymmetrical, 12
Nuclear magnetic resonance (NMR), 

17, 36, 69–70, 122, 203, 217

Octamethylcyclotetrasiloxane, 97
Optically active, 32, 87
Organosilicon, 2, 10, 120, 131
Orientation, 36, 38, 68, 70, 168–169, 

173, 226, 229
Orthosilicate, 34, 150
Osmometry, 18
Ostwald ripening, 221
Ozone, 98, 125, 127

Payne effect, 150
Permeability, 2, 18, 45, 95–96,  

100–101, 120, 125, 217–218, 
228, 232, 262

Phase separation, 70, 100, 232, 236
Photoluminescence spectroscopy, 69
Plasma 

ammonia, 124
argon, 125
gas, 129
helium, 125
hydrogen, 125
oxygen, 124–127, 129, 131
radio-frequency, 125
water, 125

Poly(3-hexylthiophene), 127
Poly(di-n-butyl-siloxane), 37
Poly(di-n-decyl-siloxane), 37
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Poly(di-n-heptyl-siloxane), 37
Poly(di-n-hexyl-siloxane), 37
Poly(di-n-nonyl-siloxane), 37
Poly(di-n-octyl-siloxane), 37
Poly(di-n-pentyl-siloxane), 37
Poly(di-n-propyl-siloxane), 37
Poly(di-n-propylsiloxane), 32, 84–85, 

92
Poly(diethylsiloxane), 32, 45, 92, 97
Poly(diethylsiloxane) (PDES), 36
Poly(dihydrogensiloxane), 85
Poly(dimethylsilmethylene), 33, 88, 96
Poly(diphenylsiloxane), 32, 87, 225
Poly(ethylene glycol) (PEG), 120,  

128–129, 175
Poly(ethylene oxide), 41, 45, 128–129, 

204–205
Poly(ethylene, dimethylsiloxane), 85
Poly(hexylthiophene), 45
Poly(hydrogenmethylsiloxane), 34
Poly(hydroxymethylsiloxane), 126
Poly(l-lysine-graftpoly(ethylene 

glycol)), 124
Poly(methyl hydrogen siloxane), 152, 

162, 174
Poly(methyl methacrylayte), 94
Poly(methylhydrosiloxane), 32, 123
Poly(methylphenylsiloxane), 32, 85–87, 

98–99
Poly(n-isopropylacrylamide), 131
Poly(n-vinyl-2-pyrrolidone), 159
Poly(p-xylylene), 12
Poly(phenyl/tolylsiloxane), 32
Poly(phenylacetylene), 33, 87
Poly(phenylmethylsiloxane), 3, 40, 43
Poly(phenylsilsesquioxane), 33
Poly(silmethylenes), 3
Poly(siloxane-silphenylenes), 3
Poly(styrene, dimethylsiloxane), 85
Poly(urethane-dimethylsiloxane), 127
Poly(vinyl alcohol), 159, 205
Poly(vinyl chloride), 45
Poly(vinyl pyrrolidone), 13
Poly(vinylmethylsiloxane), 3, 41, 43, 

125
Polyamidoamine, 120
Polybenzoxazine, 205
Polybutadiene, 33, 130, 166
Polycarbonate, 130

Polyethylene (PE) 
blend, 44
branched, 175
conformation, 93
copolymer, 38
crystallization, 93
elastomer, 71
high-density (HDPE), 131, 227
low-density (LDPE), 38, 127
surface, 127, 131

Polyhedral oligomeric silsesquioxane 
(POSS), 230

Polyisobutylene, 45, 88
Polymerization 

atom transfer radical (ATRP), 12–13
cationic, 11
copolymerization, 34, 203, 230
ionic, 12
plasma, 123, 125
radical, 12, 126
ring-opening, 10

Polyphosphazene, 93
Polypropylene (PP) 

blend, 44, 127, 131
block, 204
elastomer, 71
grafting, 123
homopolymer, 32
preparation, dendrimer, 35
reinforced polymer, 227

Polystyrene (PS) 
blend, 44
block, 204
cross-linked particle, 95
cyclic, 16, 41
particle filler, 224, 232, 234
PDMS composite, 99
triblock copolymer, 11

Polyurethane, 130, 162, 165, 172, 205
Positron annihilation spectroscopy,  

69

Radiation, 3, 16–17, 40, 91, 98–99, 
125, 144–145, 156, 160, 227

Raman spectroscopy, 69, 99
Replication techniques, 233
Reversibility, 10, 221–222
Rheovibron, 172
Rimplast, 205
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Ring-opening 
cyclic oligomer, 10
hydride transfer reaction, 11
reactive chain, 33
tetramer, 10, 162

Rochow process, 9
Room-temperature vulcanizate (RTV), 

266

Self-healing, 16, 128, 144, 227
Sesquisiloxane, 2, 12, 33, 40, 89, 129, 

203, 228, 230, 268
Silalkylene, 2–3, 33
Silicification, 232
Silicoketone, 2
Silicone, 2, 10, 45, 70, 96, 98–99, 120, 

129, 205, 232–233
Silicone oil, 98, 121, 126
Silicontetrachloride, 2
Siloxane-silalkylene, 3
Siloxane-silarylene, 2–3
Silphenylene, 33, 83, 90–91
Single-molecule spectroscopy, 218
Skin, artificial, 96, 262
Small-angle scattering, 71, 217
Soft lithography, 266
Sol-gel 

ceramic, 216
condensation, 15, 216–217
hydrolysis, 15, 216–217
preparation, filler particle, 218
reaction, 2, 35, 128, 218, 220

Spectroscopic ellipsometry, 69
Spectroscopy 

infrared spectroscopy (IR), 69, 127
photoluminescence, 69
positron annihilation, 69
raman, 69, 99
single-molecule, 218
spectroscopic ellipsometry, 69
UV, 17
X-ray photoelectron, 122, 127, 130

Static light scattering (SLS), 71, 99
Stereochemistry, 12–13, 32, 84–87, 92
Stimuli-responsive, 120, 144
Stress-optical coefficient, 39, 172
Substitution reaction, 33
Supercritical carbon dioxide, 71, 99
Superhydrophilicity, 120
Superhydrophobicity, 120

Surface properties 
adhesion, 96, 121, 124, 129–130, 

205, 223, 266
biofouling, 129–130
cells, 129
contact angle, 121, 130
controlled release, 128, 160, 264
friction, 122, 130–131
grafting, 97, 123, 129, 205
lubricity, 130, 205
protein adsorption, 128–129
recovery and restructuring, 127
self-healing, 16, 128, 144, 227
sorption, 72, 159
spreading, 101, 121, 129
surface pressure, 122
swelling, 36, 122, 144, 147–149, 152, 

154–155, 159–160, 166–167, 
222–223, 230

tethering, 123
tribology, 131
wettability, 121
wetting, 45, 96

Surface segregation, 127
Swelling 

characterization, 122, 144, 149, 159, 
222–223, 230

degree of, 149, 154, 160, 166
elastomer, 36, 147–148, 154–155, 

167
Synthesis 

Diels-Alder, 40
Radical polymerization, 12, 126
Rochow process, 9

Tacticity 
atactic, 12, 85–87
isotactic, 12, 85–87, 227
syndiotactic, 12, 45, 86–87

Tetrachlorosilane, 9
Tetraethoxysilane, 127, 150
Tetraethylorthosilicate (TEOS), 12, 

150, 216, 220
Theory 

constrained-junction, 147
density functional, 19, 100
liquid-state, 100
molecular dynamics, 41–42, 71–72, 

124, 150
molecular modeling, 40, 72
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Monte Carlo simulation, 42, 84, 168
phantom network, 154
reactive force field, 19
self-consistent field, 42
weakest-link, 161, 163

Thermodynamics, 40, 99
Thermogravimetric analysis (TGA),  

18
Thermoporometry, 70–71, 173
Thermoset, 46, 174, 226
Transparency, 18, 97, 221, 235, 

266–267
Trichlorosilane, 2, 124
Tubing, 262–263

Ultra small angle x-ray scattering 
(USAXS), 227

Ultracentrifugation, 18
Ultrasond, 72, 84, 174

Ultrasound pulse-propagation, 72
Ultraviolet radiation (UV), 16
UV spectroscopy, 17
UV-curable, 45, 265
UV/ozone treatment, 127

viscoelastic properties, 144, 147, 153, 
171–172, 228, 235

Viscometry, 18

Weakest-link theory, 163
Wide-angle scattering (WAS), 82

X-ray diffraction (XRD), 36, 40
X-ray photoelectron spectroscopy, 122, 

127, 130

Zeigler-Natta catalyst, 87
Zeolite, 71, 231
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